
Draft Draft

Rendered: April 20, 2015 1 Git Commit: bf1d8a

Bare Timestamp Signatures
with WS-Security

Paul Glezen, IBM

Abstract

This document is a member of the Bare Series of WAS topics distributed in both stand-alone and in collection form.
The latest renderings and source are available on GitHub at http://pglezen.github.io/was-config.

Table of Contents
1. Concepts ... 1

1.1. What versus How ... 1
1.2. Protection versus Authentication ... 1
1.3. Callback Handlers .. 2
1.4. Must Understand .. 2
1.5. Application Code Requirements .. 2

2. Implementation ... 3
2.1. Key Stores .. 3
2.2. The Policy Set ... 4
2.3. Client Policy Set Bindings ... 7
2.4. Provider Policy Set Bindings .. 11

1. Concepts
WS-Policy is a very general framework for describing “non-functional” requirements for web services. WS-Policy
applies to many aspects of web services such as addressing, reliability, notifications, and most commonly, security.
The power of this concept lies in the potential to apply these policies to applications without requiring changes to
the application code. WS-Policy addresses a wide variety of requirements in a vendor neutral way. This has obvious
benefits; but also leads to its commonly cited drawback: its complexity and abstraction levels often discourage its
adoption.

Since this document only addresses WS-Security, it often uses the terms WS-Policy and WS-Security interchangeably.

1.1. What versus How
WS-Security documents, in order to be general enough to apply in a platform-neutral way, are restricted to what is
to be done. Examples of “what” include “encrypt this field” or “add a time stamp and sign it.” But when it comes to
implementing these mandates, there is still the question of how. The most common examples of "how" are “how is
an encryption key to be procured” or “how is a certificate verified to be trustworthy” or "how is a certificate to be
specified in a SOAP payload". In WebSphere Application Server (WAS), this separation of concerns is implemented
with policy sets and policy set bindings.

1.2. Protection versus Authentication
The WS-Security configuration panels often distinguish between protection tokens and authentication tokens. In this
context, protection refers to protecting the message from eavesdropping and/or corruption (whether accidental or ma-
licious). Eavesdropping is addressed by encryption. Message corruption is addressed by signatures. In this document
these tokens are asymmetric X.509 binary security tokens.

http://pglezen.github.io/was-config

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 2 Git Commit: bf1d8a

Authentication tokens contain identity information. This identity information may be encrypted and/or signed. It con-
veys to the provider the identity on behalf of whom the request is executing.

1.3. Callback Handlers
The WAS security runtime uses a framework to apply the same processing pattern to similar scenarios. But while the
high-level processing is the same, details about the input can vary widely. A common example is the authentication
process. One can authenticate via a user ID and password, a SAML assertion, an LTPA token, an SSL certificate, or
others. Each of these types of authentication have a callback handler class associated with it. When specifying which
authentication to use, the callback handler class is specified for processing and the callback class is populated with the
input. Each callback handler expects input in the form of its associated callback.

This concept appears often in WS-Security configuration panels. When confronted with a callback handler configura-
tion, it's just a way to pass data into the framework process. For WS-Security panels, this is used to convey the key
and trust store information.

1.4. Must Understand
WS-Security headers support a mustUnderstand attribute. If this attribute is set to "1", it means all intermediaries
must be able to process the security information. If a signature is included, the intermediaries must be able to verify
it. If intermediaries are not required to process the security token, then this attribute should have a value of "0" or the
attribute must be absent (zero is assumed when absent).

By default, a WS-Security binding configuration will add mustUnderstand="1". To override this default requires

a custom property set on the binding. This location for this custom property in the WAS admin console is Services →
General client policy set bindings → (binding) → WS-Security → Custom properties.

The mustUnderstand custom property is defined under Outbound Custom Properties and is named

com.ibm.wsspi.wssecurity.config.request.setMustUnderstand

Another useful custom property for the client bindings is defined under Inbound Custom Properties. It determines
whether the "consumer" requires a timestamp on the response. Its name is

com.ibm.wsspi.wssecurity.consumer.timestampRequired

Since this property is defined on the inbound section for a client, it is referring to a response (from the provider).
By default this property value is 1; meaning the provider must sign sign a return time stamp or the response will be
rejected. This restriction may be relaxed by setting this value to 0.

1.5. Application Code Requirements
WS-Security policies can only be applied to Java bindings implemented with JAX-WS. They cannot be applied to

JAX-RPC bindings. Services implemented with JAX-WS bindings will appear under Services → Service providers.
Service provides are always considered to be managed.

JAX-WS client bindings can be either managed or non-managed, depending on how they are packaged and initialized.
A JAX-WS client is only managed if it is retrieved via a local JNDI reference. Obtaining a JAX- WS service reference
through either direct instantiation or through global JNDI look-up are not managed. Non-managed JAX-WS clients
cannot have WS-Security policy applied to them because they bypass the required WAS runtime hooks.

Managed JAX-WS client have to be declared through either the @WebServiceRef annotation or the ser-
vice-ref entry in a deployment descriptor. The @WebServiceRef annotation is the more convenient option. But
scanning for this annotation is restricted to EJB classes, Servlet classes, JAX-WS handler classes, and some service

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 3 Git Commit: bf1d8a

endpoint implementations. Moreover, it is not always practical to add @WebServiceRef annotations to every class
in which a service client is required.

Web application projects can have a service-ref element to their web.xml deployment descriptor. The following
is how such an entry would look for the CC example consumer web application.

 <service-ref>
 <service-ref-name>service/CCService</service-ref-name>
 <service-interface>org.acme.cc.jaxws.CCService</service-interface>
 </service-ref>

This works when the JAX-WS client binding classes are packaged within the WAR project, either directly compiled
to the classes directory or included as a JAR file in WEB-INF/lib. But if the JAX-WS client bindings are packaged
as a utility JAR included within the EAR file, an extra element is needed in the deployment descriptor.

 <service-ref>
 <service-ref-name>service/CCService</service-ref-name>
 <service-interface>org.acme.cc.jaxws.CCService</service-interface>
 <service-qname xmlns:pfx="urn:issw:bare:wssec:cc:query">pfx:CCService</service-
qname>
 </service-ref>

The service-qname element allows the local reference look-up to successfully determine the QName for the client
binding service class. The xmlns:pfx attribute is a namespace declaration. The value should be the namespace
declared for your service element of the relevant WSDL document.

2. Implementation
The signatures described here are considered protection tokens for the purpose of configuration within the WAS admin
console. In our app-to-app scenario, the signature is doubling as an authentication mechanism of sorts, since only the
possessor of the private key could have signed the message. But don't let this secondary usage misguide you when
working through the policy set binding panels. The signature scenario exclusively deals with protection tokens, not
authentication tokens.

2.1. Key Stores

2.1.1. Service Consumer

The service consumer requires a key store containing a private/public key pair that identifies the service consumer
application. The public key will be extracted so that it may be provided to the consumer for the purpose establishing
trust.

This key store, key alias, and password will be configured in the general client policy bindings as a reference to a
managed key store. The scripting burden of the WS-Security configuration would be eased if the key store and key
alias names could be consistent among environments.

2.1.2. Service Provider

The service provider requires a trust store containing the signer certificates that the provider is willing to accept. For
this WS-Security configuration, this amounts to the CCConsumer public certificate.

As with the service consumer case, choosing a consistent name for trust store simplifies the scripting of the service
provider policy set bindings.

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 4 Git Commit: bf1d8a

2.2. The Policy Set
A policy set is a set of WS-Policy documents. As mentioned in Section 1.1, a policy document addresses what is to be
done or enforced. Since both ends of a consumer-provider channel must agree on this, the policy document is usually
shared between both parties.

In the present case, the policy document will specify the signing of a time stamp. Later sections address policy set
bindings that configure role and environment specific configurations, mostly to do with key stores.

2.2.1. Policy Set Creation

The following steps show how to create a policy set that specifies

• A timestamp to be added to the WS-Security header

• the timestamp to be signed

This policy set is simple enough to create from scratch.

1. In the WAS admin console, navigate to Services → Policy sets → Application Policy sets.

2. Click the New button.

3. For Name, enter Sign Timestamp.

4. For Description, enter Add a timestamp to the SOAP security header and sign it.

5. In the Policies section, click the New button and select WS-Security. This will cause a WS-Security link to appear
in the list.

6. Click the WS-Security link.

7. Click the main policy link.

This panel holds all settings for the WS-Security policy. The Message level protection box should already be
checked. In the present case, all we wish to do is add a timestamp and sign it. We will remove the other items.

Figure 1. Main Policy Panel

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 5 Git Commit: bf1d8a

8. The checkbox Include timestamp in security header should already be checked.

9. Click the Request message part protection link.

10. Under Encrypted parts, select app_encparts and click the Delete. We remove the encrypted parts because we will
not be encrypting the payload at the message level.

11. Under Signed parts, select app_signparts and click Edit.

Figure 2. Message parts to sign

12. By default there are five signed parts specified: three general parts and two timestamp parts at the bottom. Remove
the top three parts compresed of the Body and two WS-Addressing QName parts. You should be left with two
XPath expression parts for the timestamp: one for SOAP 1.1 and one for SOAP 1.2.

13. Click OK for the signed parts and Done for the request message part protection.

14. Click Asymmetric signature and encryption policies. Verify that X.509 is chosen for the Message Integrity Policy
section as shown in Figure 3.

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 6 Git Commit: bf1d8a

Figure 3. Asymmetric signature and encryption policies

If they are not present, click the Action drop-down menu and select Add X.509 Type. Choose the version shown
in Figure 4.

Figure 4. Add X.509 Type

This completes the specification of the request message protection.

• The default algorithms are fine; but may be adjusted. If you choose this section, only adjust the Algorithm suite. Do
not change the Canonicalization algorithm or the XPath version unless you know what you're doing.

• There are no request or response tokens for this configuration.

2.2.2. Policy Set Export and Import

A policy set is usually shared between consumer and provider instances as well as among different environments. It
is usually created once and exported; then imported wherever else it is needed.

To export the Sign Timestamp policy, navigate to Services → Policy sets → Application policy sets. Check the
box next to Sign Timestamp and click the Export button at the top. This will reveal a Sign Timestamp.zip link. Click
this link to download the policy set export.

Tip

Because "Sign Timestamp" contains a space in the name for readability, the admin console will supply a
default file name of Sign Timestamp.zip. Scripting will be simplified if this space is removed from the
file name. This space will still be preserved for the policy name after import into other WAS cells.

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 7 Git Commit: bf1d8a

Here are the steps to import a policy set.

1. In the admin console, navigate to Services → Policy sets → Application policy sets.

2. Click the Import button and select From Selected location.

3. Click the Browse button and select the policy set archive.

4. Click OK.

The imported policy set should now appear in the list of application policy sets.

2.3. Client Policy Set Bindings
The client policy set bindings for the CCConsumerApp application specifies how the consumer application will sign
the SOAP payload elements required by the policy set. This amounts to specifying

• a key store along with the alias of the key used to sign the request,

• how the corresponding certificate is to be identified.

These concepts are illustrated below in Figure 5 as objects in a WAS configuration.

Figure 5. Client binding concepts

The protection token object references a key store and contains properties for specifying the alias of the relevant key
in the key store along with a key store password. It represents a private key in the configuration.

The key info object determines how information about the key will be added to the payload. Examples include referring
to the certificate's serial number, the certificate's SHA1 thumbprint, or just including the entire certificate as base64-
encoded text. In addition to specifying how the key will be referenced in the payload, it also includes a reference to
the key itself through through a reference to the associated protection token object.

The request message protection object binds the protection token and key info into a single configuration. Only when
key info objects are referenced by a request message protection object are they "activated" by the binding.

The objects in Figure 5 are configured in the WAS admin console by navigating to Services → Policy sets → General
client policy set bindings. After selecting from the particular binding, click the WS-Security link. unfortunately not

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 8 Git Commit: bf1d8a

all objects are available from the same panel. Figure 6 gathers together the three screens needed for this configuration
with the conceptual objects from Figure 5 superimosed on them for reference.

Figure 6. Client binding concepts overlayed on screen shot

The WS-Security panel is shown at the top of Figure 6. The Authentication and protection link navigates to the panel
on the left. The Keys and certificates link navigates to the panel on the right. The direction of the arrows in Figure 6
convey the direction of references. So the objects must be configured in the reverse order of the arrows so that the
references may be resolved.

1. Configure a managed key store as described in Section 2.1.1.

2. Create a protection token object referencing the key store.

3. Create a key info object referencing the protection token.

4. Create a request message protection object referencing the key info object.

5. Add custom properties.

The panel for the last item is not shown in Figure 6. But the Custom properties link to its panel is shown near the top.

2.3.1. Creation

These instruction show how to create a client policy set binding from scratch the supports the signing of a timestamp.
It presupposes the configuration of a managed key store named CCConsumerkeyStore that holds the signer key and
certificate. The alias for the signer certificate is ccconsumer.

1. In the Admin Console navigate to Services → Policy sets → General client policy set bindings.

2. Click the New button.

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 9 Git Commit: bf1d8a

3. For Bindings configuration name, enter CCConsumerBindings.

4. For Description, enter Specify key and key info to generate a signature for a
timestamp.

5. In the empty list of policies, click the Add button and select WS-Security from the dropdown list.

This reveals the four sections for the message security policy bindings. This will be the starting point for much
of the binding configuration and will henceforth be referred to as the bindings list of four.

6. Select the Authentication and protection link from the bindings list of four.

7. Under Protection tokens click the New token button and select Token generator. The client is a token generator
(instead of consumer) because the client provides the signature of the timestamp.

8. For Name, enter gen_signx509token.

This name can be arbitrary. For this scenario, we stick to the convention used by the sample bindings included
with WAS. The "gen" portion of the name refers to its role as a token generator ("con" for consumer is an
alternative). The "sign" portion designates the role of a signatue signer ("enc" for encryption is the alternative).

9. For Token type, select X509V3 v1.0.

10. Click the OK button. This adds the entry to the list of protection tokens. But it still requies additional configuration.
So click the gen_signx509token link under protection tokens.

11. Near the bottom under Additional Bindings, click the Callback handler link.

12. Under the Keystore section, choose the CCConsumerKeyStore managed key store created earlier. Since it should
only have a single key pair, the Name and Alias are populated automatically. You must still provide the password.

13. Click OK twice and save the configuration.

At this point, your binding configuration ha sspecified the key to use for the signature (the policy set determined
what to sign). When the service provider receives the signature, it needs a way to determine what certificate to
use for verification. This information is called the key info and there are several standards-based ways to specify
it. We specify the embedded token option in the next steps.

14. Navigate back to the General client policy set bindings panel of Step 1. You should see the new CCConsumerBind-
ings entry.

15. Click Keys and certificates.

16. Under the Key information section, click New Outbound. We choose outbound because the signature will be
outbound from the consumer.

17. For Name, enter gen_signkeyinfo.

18. For Type, select Embedded token from the dropdown list.

19. For Token generator or consumer name, choose the gen_signx509token key entry created in the previous section.

Since we are developing this binding from scratch, it should be the only entry available. If instead we had copied
a sample binding to modify, there would be many entries available and we must take care to choose the right one.

20. Click OK and save.

At this point you have specified a key for signing the timestamp and specified how the key identity is to be
conveyed.

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 10 Git Commit: bf1d8a

21. Navigate back to the binding list of four (click WS-Security in the bread-crumb tail at the top) and select Au-
thentication and protection.

You'll see the key definition we created earlier under Protection tokens. It references a particular key in a key
store. This protection token was itself referenced in the previous section by a key info object (Step 19). These
definitions by themselves do activate them. To be active, they must be referenced by either a request or response
message protection object.

22. Under Request message signature and encryption protection, click the New Signature button.

23. For Name, enter asymmetric-signingInfoRequest.

24. For Signing key information, choose gen_signkeyinfo from the dropdown list. This was the key info we created
earlier and should be the only choice available.

25. Click the link labeled Signed part reference default.

26. In the URL field, select http://www.w3.org/2001/10/xml-exc-c14n#.

27. Click OK and save.

28. Navigate back to the bindings list of four and select Custom properties. We use two custom properties to specify
that not all intermediaries are required to understand the signatures and that the client does not require a signed
timestamp on the response.

29. Under Inbound Custom Properties, set the following property to 0:

com.ibm.wsspi.wssecurity.consumer.timestampRequired

30. Under the Outbound Custom Properties, set the following property to 0:

com.ibm.wsspi.wssecurity.config.request.setMustUnderstand

Figure 7. Client binding concepts overlayed on screen shot

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 11 Git Commit: bf1d8a

31. Click OK and save.

2.3.2. Export and Import

Exporting a client bindings is useful for backup and scripting. It is not typically shared with other client systems since
policy set bindings are particular to their environment. In the present case, a managd key store is the only external
reference. The external reference requires the following three items.

• the name of the managed key store

• the password for the managed key store

• the alias of the signer key

Importing a client binding configuration will require that these match with an existing key store of that these items
be adusted to an existing key store.

To export a client binding configuration, simply check the box next to its entry and click the Export button. A link
will be provided for starting the download.

2.4. Provider Policy Set Bindings
The provider policy set bindings for the CCProviderApp application specify how the provider application will verify
the signed SOAP payload elements required by the policy set. This amounts to specifying a trust store containing the
trusted signer certificates. Figure 8 illustrates the WAS configuration objects needed to specify the trust store. It's a
lot of overhead to simply specify a trust store. It's the price of the abstraction layer that accounts for all the different
kinds of supported WS-Security scenarios.

Figure 8. Provider Bindings Concepts

As with the client bindings case in Section 2.3, the order of configuration is determined by the references. The steps
follow the arrows in reverse order.

1. Create a trust store a described in Section 2.1.

2. Create the trust store anchor object that references the managed trust store.

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 12 Git Commit: bf1d8a

3. Create the protection token object that references the trust anchor.

4. Create the key info object that references the protection token.

5. Create the request message protection object that references the key info.

The request message protection object determines which objects are active when the provider binding is assigned to a
service. There are request and response types as well as signature and encryption types. For the present case, a request
signature type is used.

The key info object is used to determine how to specify the certificate for generated requests. Since this is a provider
configuration that will consume the token, no such specification is needed. Only a token generator has to specfy this.
The only configuration in the key info for the provider is the protection token reference.

The protection token references key stores and trust stores. In this configuration it references a trust anchor object. It
can also reference standalone certificates in the absense of a trust store.

A trust anchor object is a reference to a managed trust store.

These objects are configured in the WAS admin console by navigating to Services → Policy sets → General provider
policy set bindings. After selecting the particular binding, click the WS-Security link. Unfortunately not all objects are
available from the same panel. Figure 9 gathers together three screens needed for this configuration with the objects
from Figure 8 superimposed on them for reference.

Figure 9. Provider binding concepts overlayed on screen shot

The WS-Security panel is shown at the top of Figure 9. From there one may navigate to either

• Authentication and protection

• Keys and certificates

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 13 Git Commit: bf1d8a

Because the references cross between the two panels, one must maneuver between the panels to establish the references
in the proper order.

2.4.1. Creation

These instructions show how to create a provider policy set binding from scratch that supports the signing of the
timestamp. It presupposes the configuration of a managed trust store named CCProviderStore that holds the trusted
signer certificates.

1. In the WAS admin console, navigate to Services → Policy sets → General provider policy set bindings.

2. Click the New button.

3. For Binding configuration name, enter CCProviderBindings.

4. For Description, enter Specify trust info to verify a signature for a timestamp.

5. In the empty list of policies, click the Add button and select WS-Security from the dropdown list.

Figure 10. Provider binding concepts overlayed on screen shot

This reveals the five sections1 for the message security policy bindings. This will be the starting point for much
of the binding configuration and will henceforth be referred to as the bindings list of five.

6. Select Keys and certificates link from the bindings list of five.

7. Under Trust anchor, click the New button.

8. For Name, enter CCProviderTrustStore.

9. Select the radio button labeled Centrally managed keystore and select the CCProviderTrustStore trust store you
created earlier from the list.

Figure 11. Provider binding truststore

1 The client bindings had four items here; the additional provider link is Caller.

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 14 Git Commit: bf1d8a

10. Click OK and save the configuration.

11. Click WS-Security from the bread-crumb links at the top and click the Authentication and protection link from
the bindings list of five.

12. Under Protection tokens click the New token button and select Token consumer. This provider is a token consumer
(not generator) because the provider verifies the signature of the timestamp.

13. For Name, enter con_signx509token.

This name is arbitrary. For this scenario, we stick to the convention used by the sample bindings shipped with
WAS. The "con" portion of the name refers to the role as a token consumer ("gen" for generator is the alternative).
The "sign" portion designates the role of a signature signer ("enc" for encryption is the alternative).

14. For Token type, select X509V3 Token v1.0.

15. Click the OK button. This adds the entry to the list of protected tokens. But it still requires additional configuration.
So click the con_signx509token link under the protected tokens.

16. Near the bottom under Additional Bindings, click the Callback handler link.

17. Under the Certificates section, select the second radio button and choose Trusted anchor store CCProviderTrustS-
tore configured earlier.

18. Click OK twice and save the configuration.

At the point your binding configuration has specified the key store to use for verifying the signature (the policy
set determined what to sign).

19. Click the WS-Security from the bread-crumb links at the top and click the Keys and certificates link.

20. Under the Key information section, click New Inbound. We choose inbound because the signature we be inbound
from the provider perspective.

21. For Name, enter con_signkeyinfo.

Note there is no Type for the key info object as in the client bindings. The provider has to make due with whatever
the client sends.

22. For Token generator or consumer name, choose the con_signx509token key entry created in the previous section.

Since we are developing the bindings from scratch, it should be the only option available. If instead we had copied
a sample binding to modify, there would be many entries available and we must take care to choose the right one.

23. Click OK and save.

24. Navigate back to the binding list of four (click WS-Security in the bread-crumb trail at the top) and select Au-
thentication and protection.

25. Under Request message signature and encryption protection, click the New Signature button.

26. For Name, enter asymmetreic-signingInfoRequest.

27. For Signing key information, choose con_signkeyinfo from the dropdown list and click Add. This was the key
info we created earlier and should be the only choice available.

28. Click the OK button at the bottom.

Draft Bare Timestamp Signa-
tures with WS-Security

Draft

Rendered: April 20, 2015 15 Git Commit: bf1d8a

29. Click back into the asymmetric-signingInfoRequest that was just created.

30. Click the link at the bottom labeled Signed part reference default.

31. Click the New.

32. In the URL field, select http://www.w3.org/2001/10/xml-exc-c14n#.

33. Click OK and save.

There are no custom properties required for the provider. Only the client bindings require custom properties.

2.4.2. Export and Import

Exporting a provider binding is useful for backup and scripting. It is not typically shared with other systems since
policy set bindings are particular to their environment. In the present case, a managed trust store is the only external
reference. The external reference requires the following two items.

• the name of the managed trust store

• the password for the managed trust store

Importing a proivder binding configuration will require that these match with an existing trust store or that these items
be adjusted to the existing trust store.

To export a provider binding configuration, simply check the box next to its entry and click the Export button. A link
will be provided for starting the download.

	Bare Timestamp Signatures with WS-Security
	Table of Contents
	1. Concepts
	1.1. What versus How
	1.2. Protection versus Authentication
	1.3. Callback Handlers
	1.4. Must Understand
	1.5. Application Code Requirements

	2. Implementation
	2.1. Key Stores
	2.1.1. Service Consumer
	2.1.2. Service Provider

	2.2. The Policy Set
	2.2.1. Policy Set Creation
	2.2.2. Policy Set Export and Import

	2.3. Client Policy Set Bindings
	2.3.1. Creation
	2.3.2. Export and Import

	2.4. Provider Policy Set Bindings
	2.4.1. Creation
	2.4.2. Export and Import

