Bare Timestamp Signatures with WS-Security

Paul Glezen
IT Specialist
IBM
 Software Services for WebSphere

Abstract

 This document is a member of the Bare Series of WAS topics
 distributed in both stand-alone and in collection form. The
 latest renderings and source are available on GitHub at
 http://pglezen.github.io/was-config.

1. Concepts

WS-Policy is a very general framework for describing “non-functional”
requirements for web services. WS-Policy applies to many aspects
of web services such as
addressing, reliability, notifications, and most commonly, security.
The power of this concept lies in the potential to apply these
policies to applications without requiring changes to the application
code. WS-Policy addresses a wide variety of requirements in a vendor
neutral way. This has obvious benefits; but also leads to its commonly
cited drawback: its complexity and abstraction levels often discourage
its adoption.

Since this document only addresses WS-Security, it often uses the terms
WS-Policy and WS-Security interchangeably.

1.1. What versus How

 WS-Security documents, in order to be general enough to apply in a
 platform-neutral way, are restricted to
 what is to be done. Examples of “what” include
 “encrypt this field” or “add a time stamp and sign it.” But when it
 comes to implementing these mandates, there is still the question of
 how.
 The most common examples of "how" are “how is an encryption key to be
 procured” or “how is a certificate verified to be trustworthy” or "how
 is a certificate to be specified in a SOAP payload". In
 WebSphere Application Server (WAS),
 this separation of concerns is implemented with
 policy sets and policy set bindings.

1.2. Protection versus Authentication

 The WS-Security configuration panels often distinguish between
 protection tokens and authentication tokens.
 In this context, protection refers to protecting the message from
 eavesdropping and/or corruption (whether accidental or malicious).
 Eavesdropping is addressed by encryption.
 Message corruption is addressed by signatures.
 In this document these tokens are asymmetric X.509 binary security tokens.

 Authentication tokens contain identity information. This identity
 information may be encrypted and/or signed. It conveys to the provider
 the identity on behalf of whom the request is executing.

1.3. Callback Handlers

 The WAS security runtime uses a framework to apply the same processing
 pattern to similar scenarios. But while the high-level processing is the
 same, details about the input can vary widely. A common example is the
 authentication process. One can authenticate via a user ID and password,
 a SAML assertion, an LTPA token, an SSL certificate, or others. Each of
 these types of authentication have a callback handler class associated
 with it. When specifying which authentication to use, the callback handler
 class is specified for processing and the callback class is populated with
 the input. Each callback handler expects input in the form of its associated
 callback.

 This concept appears often in WS-Security configuration panels.
 When confronted with a callback handler configuration,
 it's just a way to pass data into the framework process.
 For WS-Security panels, this is used to convey the key and trust store
 information.

1.4. Must Understand

 WS-Security headers support a
 mustUnderstand
 attribute. If this attribute is set to "1",
 it means all intermediaries must be able to process the security information.
 If a signature is included, the intermediaries must be able to verify it.
 If intermediaries are not required to process the security token,
 then this attribute should have a value of "0"
 or the attribute must be absent
 (zero is assumed when absent).

 By default, a WS-Security binding configuration will add
 mustUnderstand="1".
 To override this default requires a custom property set on the binding.
 This location for this custom property in the WAS admin console is
 Services → General client policy set bindings → (binding) → WS-Security → Custom properties.

 The mustUnderstand custom property is defined under
 Outbound Custom Properties
 and is named

com.ibm.wsspi.wssecurity.config.request.setMustUnderstand

 Another useful custom property for the client bindings is defined under
 Inbound Custom Properties.
 It determines whether the "consumer" requires a timestamp on the response.
 Its name is

com.ibm.wsspi.wssecurity.consumer.timestampRequired

 Since this property is defined on the inbound section for a client,
 it is referring to a response (from the provider).
 By default this property value is 1; meaning the provider must sign sign a return
 time stamp or the response will be rejected.
 This restriction may be relaxed by setting this value to 0.

1.5. Application Code Requirements

 WS-Security policies can only be applied to Java bindings implemented with JAX-WS.
 They cannot be applied to JAX-RPC bindings.
 Services implemented with JAX-WS bindings will appear under
 Services → Service providers.
 Service provides are always considered to be managed.

 JAX-WS client bindings can be either managed or non-managed,
 depending on how they are packaged and initialized.

 A JAX-WS client is only managed if it is retrieved via a local JNDI reference.
 Obtaining a JAX- WS service reference through either direct instantiation or
 through global JNDI look-up are not managed.
 Non-managed JAX-WS clients cannot have WS-Security policy applied to them
 because they bypass the required WAS runtime hooks.

 Managed JAX-WS client have to be declared through either the
 @WebServiceRef annotation or the
 service-ref
 entry in a deployment descriptor.
 The @WebServiceRef annotation is the more convenient option.
 But scanning for this annotation is restricted to EJB classes, Servlet classes,
 JAX-WS handler classes, and some service endpoint implementations.
 Moreover, it is not always practical to add @WebServiceRef
 annotations to every class in which a service client is required.

 Web application projects can have a
 service-ref
 element to their web.xml deployment descriptor.
 The following is how such an entry would look for the CC example consumer
 web application.

 <service-ref>
 <service-ref-name>service/CCService</service-ref-name>
 <service-interface>org.acme.cc.jaxws.CCService</service-interface>
 </service-ref>

 This works when the JAX-WS client binding classes are packaged within
 the WAR project, either directly compiled to the classes directory or
 included as a JAR file in
 WEB-INF/lib.
 But if the JAX-WS client bindings are packaged as a utility JAR included
 within the EAR file, an extra element is needed in the deployment descriptor.

 <service-ref>
 <service-ref-name>service/CCService</service-ref-name>
 <service-interface>org.acme.cc.jaxws.CCService</service-interface>
 <service-qname xmlns:pfx="urn:issw:bare:wssec:cc:query">pfx:CCService</service-qname>
 </service-ref>

 The service-qname element allows the local
 reference look-up to successfully determine the QName for the client
 binding service class. The xmlns:pfx attribute is a
 namespace declaration. The value should be the namespace declared for
 your service element of the relevant WSDL document.

2. Implementation

 The signatures described here are considered protection tokens
 for the purpose of configuration within the WAS admin console. In our
 app-to-app scenario, the signature is doubling as an authentication
 mechanism of sorts, since only the possessor of the private key could have
 signed the message. But don't let this secondary usage misguide you when
 working through the policy set binding panels. The signature scenario
 exclusively deals with protection tokens, not authentication tokens.

2.1. Key Stores

2.1.1. Service Consumer

 The service consumer requires a key store containing a private/public
 key pair that identifies the service consumer application. The public
 key will be extracted so that it may be provided to the consumer for
 the purpose establishing trust.

 This key store, key alias, and password will be configured in the general
 client policy bindings as a reference to a managed key store. The scripting
 burden of the WS-Security configuration would be eased if the key store and
 key alias names could be consistent among environments.

2.1.2. Service Provider

 The service provider requires a trust store containing the signer certificates
 that the provider is willing to accept.
 For this WS-Security configuration, this amounts to the CCConsumer public certificate.

 As with the service consumer case, choosing a consistent name for trust store
 simplifies the scripting of the service provider policy set bindings.

2.2. The Policy Set

A policy set is a set of WS-Policy documents.
As mentioned in Section 1.1,
a policy document addresses what is to be done or enforced.
Since both ends of a consumer-provider channel must agree on this,
the policy document is usually shared between both parties.

In the present case, the policy document will specify the signing
of a time stamp. Later sections address policy set bindings that
configure role and environment specific configurations,
mostly to do with key stores.

2.2.1. Policy Set Creation

 The following steps show how to create a policy set that specifies

	
 A timestamp to be added to the WS-Security header

	
 the timestamp to be signed

 This policy set is simple enough to create from scratch.

	
 In the WAS admin console, navigate to
 Services → Policy sets → Application Policy sets.

	
 Click the New button.

	
 For Name, enter Sign Timestamp.

	
 For Description, enter
 Add a timestamp to the SOAP security header and sign it.

	
 In the Policies section,
 click the New button
 and select WS-Security.
 This will cause a WS-Security link to appear in the list.

	Click the WS-Security link.

	
 Click the main policy link.

 This panel holds all settings for the WS-Security policy. The
 Message level protection box should already be checked.
 In the present case, all we wish to do is add a timestamp and sign it. We
 will remove the other items.

Figure 1. Main Policy Panel
[image: Main Policy Panel]

	
 The checkbox Include timestamp in security header
 should already be checked.

	
 Click the Request message part protection link.

	
 Under Encrypted parts,
 select app_encparts and click the
 Delete.
 We remove the encrypted parts because we will not be encrypting the
 payload at the message level.

	
 Under Signed parts,
 select app_signparts
 and click Edit.

Figure 2. Message parts to sign
[image: Message parts to sign]

	
 By default there are five signed parts specified:
 three general parts and two timestamp parts at the bottom.
 Remove the top three parts compresed of the Body and two
 WS-Addressing QName parts.
 You should be left with two XPath expression parts for the timestamp:
 one for SOAP 1.1 and one for SOAP 1.2.

	
 Click OK for the signed parts and
 Done for the request message part protection.

	
 Click Asymmetric signature and encryption policies.
 Verify that X.509 is chosen for the
 Message Integrity Policy
 section as shown in Figure 3.

Figure 3. Asymmetric signature and encryption policies
[image: Asymmetric signature and encryption policies]

 If they are not present, click the Action drop-down
 menu and select Add X.509 Type.
 Choose the version shown in Figure 4.

Figure 4. Add X.509 Type
[image: Add X.509 Type]

This completes the specification of the request message protection.

	
 The default algorithms are fine; but may be adjusted.
 If you choose this section, only adjust the
 Algorithm suite.
 Do not change the Canonicalization algorithm
 or the XPath version unless you know what
 you're doing.

	
 There are no request or response tokens for this configuration.

2.2.2. Policy Set Export and Import

 A policy set is usually shared between consumer and provider instances
 as well as among different environments.
 It is usually created once and exported;
 then imported wherever else it is needed.

 To export the Sign Timestamp policy, navigate to
 Services → Policy sets → Application policy sets.
 Check the box next to Sign Timestamp and click the
 Export button at the top. This will reveal a
 Sign Timestamp.zip link. Click this link to
 download the policy set export.

Tip

 Because "Sign Timestamp" contains a space in the name for readability,
 the admin console will supply a default file name of
 Sign Timestamp.zip.
 Scripting will be simplified if this space is removed from the file name.
 This space will still be preserved for the policy name after import into
 other WAS cells.

 Here are the steps to import a policy set.

	
 In the admin console, navigate to
 Services → Policy sets → Application policy sets.

	
 Click the Import button and select
 From Selected location.

	
 Click the Browse button and select the
 policy set archive.

	
 Click OK.

 The imported policy set should now appear in the list of
 application policy sets.

2.3. Client Policy Set Bindings

The client policy set bindings for the CCConsumerApp application
specifies how the consumer application will sign the SOAP payload
elements required by the policy set. This amounts to specifying

	
a key store along with the alias of the key used to sign the request,

	
how the corresponding certificate is to be identified.

These concepts are illustrated below in
Figure 5
as objects in a WAS configuration.

Figure 5. Client binding concepts
[image: Client binding concepts]

The protection token object references a key store and
contains properties for specifying the alias of the relevant key in the key
store along with a key store password.
It represents a private key in the configuration.

The key info object determines how information about
the key will be added to the payload. Examples include referring to the
certificate's serial number, the certificate's SHA1 thumbprint, or just
including the entire certificate as base64-encoded text.
In addition to specifying how the key will be referenced in the payload,
it also includes a reference to the key itself through through a reference
to the associated protection token object.

The request message protection object binds the
protection token and key info into a single configuration.
Only when key info objects are referenced by a request message protection
object are they "activated" by the binding.

The objects in Figure 5 are
configured in the WAS admin console by navigating to
 Services → Policy sets → General client policy set bindings.
 After selecting from the particular binding, click the
 WS-Security link.
 unfortunately not all objects are available from the same panel.
 Figure 6 gathers together
 the three screens needed for this configuration with the conceptual
 objects from Figure 5
 superimosed on them for reference.

Figure 6. Client binding concepts overlayed on screen shot
[image: Client binding concepts overlayed on screen shot]

 The WS-Security panel is shown at the top of
 Figure 6.
 The Authentication and protection link navigates to the
 panel on the left.
 The Keys and certificates link navigates to the panel
 on the right.
 The direction of the arrows in
 Figure 6
 convey the direction of references.
 So the objects must be configured in the reverse order of the arrows so that
 the references may be resolved.

	Configure a managed key store as described in
 Section 2.1.1.

	Create a protection token object referencing the key store.
	Create a key info object referencing the protection token.
	Create a request message protection object referencing the key
 info object.

	Add custom properties.

 The panel for the last item is not shown in
 Figure 6.
 But the Custom properties link to its panel is
 shown near the top.

2.3.1. Creation

These instruction show how to create a client policy set binding from scratch
the supports the signing of a timestamp.
It presupposes the configuration of a managed key store named CCConsumerkeyStore
that holds the signer key and certificate.
The alias for the signer certificate is ccconsumer.

	
 In the Admin Console navigate to
 Services → Policy sets → General client policy set bindings.

	Click the New button.

	
 For Bindings configuration name, enter
 CCConsumerBindings.

	
 For Description, enter
 Specify key and key info to generate a signature for a timestamp.

	
 In the empty list of policies, click the Add button and select
 WS-Security from the dropdown list.

 This reveals the four sections for the message security policy bindings. This will
 be the starting point for much of the binding configuration and will henceforth be
 referred to as the bindings list of four.

	
 Select the Authentication and protection link from the
 bindings list of four.

	
 Under Protection tokens click the New token
 button and select Token generator. The client is a token generator
 (instead of consumer) because the client provides the signature of the timestamp.

	
 For Name, enter gen_signx509token.

 This name can be arbitrary. For this scenario, we stick to the convention used by the
 sample bindings included with WAS. The "gen" portion of the name
 refers to its role as a token generator ("con" for consumer is an
 alternative). The "sign" portion designates the role of a signatue
 signer ("enc" for encryption is the alternative).

	
 For Token type, select X509V3 v1.0.

	
 Click the OK button.
 This adds the entry to the list of protection tokens.
 But it still requies additional configuration.
 So click the gen_signx509token link under protection tokens.

	
 Near the bottom under Additional Bindings,
 click the Callback handler link.

	
 Under the Keystore section,
 choose the CCConsumerKeyStore managed key store created earlier.
 Since it should only have a single key pair, the Name and
 Alias are populated automatically.
 You must still provide the password.

	
 Click OK twice and save the configuration.

 At this point, your binding configuration ha sspecified the key to use for the signature
 (the policy set determined what to sign).
 When the service provider receives the signature, it needs a way to determine what
 certificate to use for verification.
 This information is called the key info and there are several
 standards-based ways to specify it.
 We specify the embedded token option in the next steps.

	
 Navigate back to the General client policy set bindings panel of
 Step 1.
 You should see the new CCConsumerBindings entry.

	
 Click Keys and certificates.

	
 Under the Key information section, click New Outbound.
 We choose outbound because the signature will be outbound from the consumer.

	
 For Name, enter gen_signkeyinfo.

	
 For Type, select Embedded token from the dropdown list.

	
 For Token generator or consumer name,
 choose the gen_signx509token key entry created in the previous section.

 Since we are developing this binding from scratch, it should be the only entry available.
 If instead we had copied a sample binding to modify, there would be many entries available
 and we must take care to choose the right one.

	
 Click OK and save.

 At this point you have specified a key for signing the timestamp and specified how the key
 identity is to be conveyed.

	
 Navigate back to the binding list of four (click WS-Security in the
 bread-crumb tail at the top) and select Authentication and protection.

 You'll see the key definition we created earlier under Protection tokens.
 It references a particular key in a key store. This protection token was itself referenced
 in the previous section by a key info object (Step 19).
 These definitions by themselves do activate them.
 To be active, they must be referenced by either a request or response message protection object.

	
 Under Request message signature and encryption protection,
 click the New Signature button.

	
 For Name, enter asymmetric-signingInfoRequest.

	
 For Signing key information, choose gen_signkeyinfo
 from the dropdown list.
 This was the key info we created earlier and should be the only choice available.

	
 Click the link labeled Signed part reference default.

	
 In the URL field, select
 http://www.w3.org/2001/10/xml-exc-c14n#.

	
 Click OK and save.

	
 Navigate back to the bindings list of four and select Custom properties.
 We use two custom properties to specify that not all intermediaries are required to understand
 the signatures and that the client does not require a signed timestamp on the response.

	
 Under Inbound Custom Properties,
 set the following property to 0:

 com.ibm.wsspi.wssecurity.consumer.timestampRequired

	
 Under the Outbound Custom Properties,
 set the following property to 0:

 com.ibm.wsspi.wssecurity.config.request.setMustUnderstand

Figure 7. Client binding concepts overlayed on screen shot
[image: Client binding concepts overlayed on screen shot]

	
 Click OK and save.

2.3.2. Export and Import

 Exporting a client bindings is useful for backup and scripting.
 It is not typically shared with other client systems since policy set bindings are
 particular to their environment.
 In the present case, a managd key store is the only external reference.
 The external reference requires the following three items.

	the name of the managed key store
	the password for the managed key store
	the alias of the signer key

 Importing a client binding configuration will require that these match with an existing
 key store of that these items be adusted to an existing key store.

 To export a client binding configuration, simply check the box next to its entry and
 click the Export button.
 A link will be provided for starting the download.

2.4. Provider Policy Set Bindings

 The provider policy set bindings for the CCProviderApp application specify how the
 provider application will verify the signed SOAP payload elements required by the
 policy set.
 This amounts to specifying a trust store containing the trusted signer certificates.
 Figure 8
 illustrates the WAS configuration objects needed to specify the trust store.
 It's a lot of overhead to simply specify a trust store. It's the price of the
 abstraction layer that accounts for all the different kinds of supported
 WS-Security scenarios.

Figure 8. Provider Bindings Concepts
[image: Provider Bindings Concepts]

 As with the client bindings case in Section 2.3,
 the order of configuration is determined by the references.
 The steps follow the arrows in reverse order.

	
 Create a trust store a described in Section 2.1.

	
 Create the trust store anchor object that references the managed trust store.

	
 Create the protection token object that references the trust anchor.

	
 Create the key info object that references the protection token.

	
 Create the request message protection object that references the key info.

 The request message protection object determines which
 objects are active when the provider binding is assigned to a service.
 There are request and response types as well as signature and encryption types.
 For the present case, a request signature type is used.

 The key info object is used to determine how to specify
 the certificate for generated requests.
 Since this is a provider configuration that will consume the token, no such
 specification is needed. Only a token generator has to specfy this. The
 only configuration in the key info for the provider is the protection token
 reference.

 The protection token references key stores and trust
 stores. In this configuration it references a trust anchor object.
 It can also reference standalone certificates in the absense of a trust store.

 A trust anchor object is a reference to a managed
 trust store.

 These objects are configured in the WAS admin console by navigating to
 Services → Policy sets → General provider policy set bindings.
 After selecting the particular binding, click the
 WS-Security link.
 Unfortunately not all objects are available from the same panel.
 Figure 9
 gathers together three screens needed for this configuration with the
 objects from
 Figure 8
 superimposed on them for reference.

Figure 9. Provider binding concepts overlayed on screen shot
[image: Provider binding concepts overlayed on screen shot]

 The WS-Security panel is shown at the top of
 Figure 9.
 From there one may navigate to either

	Authentication and protection
	Keys and certificates

 Because the references cross between the two panels, one must maneuver
 between the panels to establish the references in the proper order.

2.4.1. Creation

 These instructions show how to create a provider policy set binding from
 scratch that supports the signing of the timestamp.
 It presupposes the configuration of a managed trust store named
 CCProviderStore that holds the trusted signer certificates.

	
 In the WAS admin console, navigate to
 Services → Policy sets → General provider policy set bindings.

	
 Click the New button.

	
 For Binding configuration name, enter
 CCProviderBindings.

	
 For Description, enter
 Specify trust info to verify a signature for a timestamp.

	
 In the empty list of policies, click the Add button
 and select WS-Security from the dropdown list.

Figure 10. Provider binding concepts overlayed on screen shot
[image: Provider binding concepts overlayed on screen shot]

 This reveals the five sections[1]
 for the message security policy bindings.
 This will be the starting point for much of the binding configuration and
 will henceforth be referred to as the
 bindings list of five.

	
 Select Keys and certificates link from the bindings
 list of five.

	
 Under Trust anchor,
 click the New button.

	
 For Name, enter
 CCProviderTrustStore.

	
 Select the radio button labeled Centrally managed keystore
 and select the CCProviderTrustStore trust store you
 created earlier from the list.

Figure 11. Provider binding truststore
[image: Provider binding truststore]

	
 Click OK and save the configuration.

	
 Click WS-Security from the bread-crumb links at the top and
 click the Authentication and protection link from the
 bindings list of five.

	
 Under Protection tokens click the New token
 button and select Token consumer.
 This provider is a token consumer (not generator) because the provider verifies the
 signature of the timestamp.

	
 For Name, enter con_signx509token.

 This name is arbitrary. For this scenario, we stick to the convention used by the
 sample bindings shipped with WAS.
 The "con" portion of the name refers to the role as a token consumer
 ("gen" for generator is the alternative).
 The "sign" portion designates the role of a signature signer
 ("enc" for encryption is the alternative).

	
 For Token type,
 select X509V3 Token v1.0.

	
 Click the OK button.
 This adds the entry to the list of protected tokens.
 But it still requires additional configuration.
 So click the con_signx509token link under the protected tokens.

	
 Near the bottom under Additional Bindings,
 click the Callback handler link.

	
 Under the Certificates section,
 select the second radio button and choose Trusted anchor store
 CCProviderTrustStore configured earlier.

	
 Click OK twice and save
 the configuration.

 At the point your binding configuration has specified the key store to use
 for verifying the signature (the policy set determined what to sign).

	
 Click the WS-Security from the bread-crumb links at the
 top and click the Keys and certificates link.

	
 Under the Key information section, click
 New Inbound. We choose inbound because the
 signature we be inbound from the provider perspective.

	
 For Name, enter
 con_signkeyinfo.

 Note there is no Type for the key info object as in the
 client bindings. The provider has to make due with whatever the client sends.

	
 For Token generator or consumer name, choose the
 con_signx509token key entry created in the previous
 section.

 Since we are developing the bindings from scratch, it should be the only option
 available. If instead we had copied a sample binding to modify, there would
 be many entries available and we must take care to choose the right one.

	
 Click OK and save.

	
 Navigate back to the binding list of four
 (click WS-Security in the bread-crumb trail at the top)
 and select Authentication and protection.

	
 Under Request message signature and encryption protection,
 click the New Signature button.

	
 For Name, enter
 asymmetreic-signingInfoRequest.

	
 For Signing key information,
 choose con_signkeyinfo from the dropdown list
 and click Add.
 This was the key info we created earlier and should be the only choice available.

	
 Click the OK button at the bottom.

	
 Click back into the asymmetric-signingInfoRequest
 that was just created.

	
 Click the link at the bottom labeled
 Signed part reference default.

	
 Click the New.

	
 In the URL field,
 select http://www.w3.org/2001/10/xml-exc-c14n#.

	
 Click OK and save.

 There are no custom properties required for the provider.
 Only the client bindings require custom properties.

2.4.2. Export and Import

 Exporting a provider binding is useful for backup and scripting.
 It is not typically shared with other systems since policy set
 bindings are particular to their environment.
 In the present case, a managed trust store is the only external
 reference.
 The external reference requires the following two items.

	the name of the managed trust store
	the password for the managed trust store

 Importing a proivder binding configuration will require that these
 match with an existing trust store or that these items be adjusted
 to the existing trust store.

 To export a provider binding configuration, simply check the box
 next to its entry and click the Export button.
 A link will be provided for starting the download.

[1]
 The client bindings had four items here;
 the additional provider link is Caller.

OEBPS/images/signtsPolicy04.png
W-Securty version
==mrmn

%508 type

[icses vemens —To]

OEBPS/images/clientBindingsConcepts.jpg
Key Info
- how token is referenced in payload

Protection Token which token to use

- key store location
- key alias
- key store password

Request Message Protection
- reference to key info object

OEBPS/images/signtsPolicy01.png
Application policy sets > Sign Timestamp > WS-Security > Main policy

Message security policies are applied to requasts and enforced on responses to support intaroperabilty.

Massage leval protection
[Require signature confirmation

Policy Details
Request token policies

Response token policies

Message Part Protection
Request message part protection
Response messsge part protection

Key Symmets

Use symmetric tokens.

Use asymmatric tokens.
‘Asymmetric signsture and sncryption policies

Include timestamp in scurity headar
Security header layout:

Strict: Daclarations must pracads use.
Layout (Lax): Order of contents can vary.
Lax but timestam required first in header.

Lax but timestamp required last in header.

‘Algorithms for asymmetric tokens

OEBPS/images/signtsPolicy02.png
SeealTree

Tvaoe

You can administer the folloving resources:

[] | Predefined Body
[| Quames [tp://schemas xmlzosp.ora/va/2004/08/addrassing
namespace,
localnama(optional)
[| Quames [t/ wwi3.org/2005/ 08 addrassing
namespace,
localnama(optional)
[[] | XPath exprassion | [[*[namaspace-un()=httpi//schamas xmizoap.org/zoap/envalops/" and local-

Iname()="Envelope')/*[namespaca-uri()= http://schemas xmisoap.org
{/sosp/anvelopa/’ and local-name()="Header)/ [namespace-uri()='http:
|//docs.oasis-open-ora/vss/2004/01/oasis- 20040 1-vas-vssecurity-secext-1.0.xsd

XPath exprassion

OEBPS/images/providerBindingsConcepts.jpg
Key Info
Protection Token i

Trust Anchor
Request Message Protection N

_—
rust
store

OEBPS/images/providerBindingsOverlay.jpg
General provider policy set bindings > CCProviderBindings > WS-Security

Authentication and protection allows you to manage the tokens used for signature,
encryption, or authentication, the signing information and encryption information. Keys and

tes allows you to manage the key information used for signature and encryption,
trust stores and certificate stores. Caller, when available, allows you to manage the caller
identity token.

Main Security Policy Bindi

Authentication and protection
Keys and certificates T
Caller

Message expiration

Custom properties

General provider policy set bindings > CCProviderBindings > WS-Security > icati General provider policy set bindings > CCProviderBindings > WS-Security > Keys and
and protection certificates
tokens and protections for ge parts can be added to the default bindings. Follow the links to configure key and certificate bindings for this policy set.

Key information
[pisable implicit protection for signature confirmation

Protaction tokens | _New Inbound... || New Outbound... | Delete |

Key Info

Select | Protection token name

You can administer t}

.

You can administer the following resources Protection Token [|sen signkevinf fbound
D con signx509token

Total 1 Certificate store

Authentication tokens [New Inbound... || New outiu | Delete |
Select [ame / | pirecton
Selact ‘Aulhﬂnﬁah’on token name Usage Sona)
None Total 0 /
=0 Trust anchor /
Request 5= si 2nd enerypion protacti ~—— hew. |
New En ion... | Delete |
Select [Name Vou capfacminister the follovind 1TUSt Anchor
.
vou can adminiter] REQUest Message Protection CCProviderTruststore frecre
cell): WIN-
] |2symmetri Cell:(node):Node2
—— Total 1
ge si and ypti i
| New Signature... || New Encryptio: |_Delete || Move Up || Move Dovm Trust ‘
Select| Name | Protection | order store
None
Total 0

OEBPS/images/clientBindingsOverlay.jpg
General dlient policy set bindings > CCConsumerBindings > WS-Security

Authentication and protection zllows you to manage the tokens used for signature, encryption, or
authentication, the signing information and encryption information. Keys and certificates allows you
to manage the key information used for signature and encryption, trust stores and certificate stores.

Main Message Security Policy Bindings

‘Authentication and protection
(o andcertficates)
Message expiration

Custom properties

General client policy set bindings > CCConsumerBindings > WS-Security > Authentication and General client policy set bindings > CCConsumerBindings > WS-Security > Keys and certificates
protection

Follow the links to configure key and certificate bindings for this policy set.
Additional tokens and protections for message parts can be added to the de

[bisable implicit protection for signature confirmation Ay fivoratice

Protection tokens

ewtoken - | Delete ‘ - how token is referenced in payload
Protection Token B |2 4 ¢ which token to use

| Total 1

Select | Protection token name

You can administer the following resource

| a0 siamesostoicen - key store location
Total 1 - key alias Certificate store
- key store password New Inbound... || New Outbound... || Delets
Authentication tokens | select ‘ e [Icfrection

New Token * || Delete [
Total 0
Select | Authentication token name | usage
None
Total 0 Trust anchor

[Nev.. || Delete |
Request message signature and encryption protection Ehinctl e |
|

__New Signature...

| None

Delete _

Move Dovn

| Total 0

Request Message Protection
- reference to key info object

Total 1

Response message signature and encryption protection

| New Signature... || New Encryption... || Delete |

Select | Name | Protection

None

Total 0

OEBPS/images/ProviderBindingsTop.png
Authenticstion snd protsction

Kevs and certiicates

Caller

Messsge expirstion

Custom properties

OEBPS/images/signtsPolicy03.png
Application policy sets > Sin Timestamp > WS-Security > Main policy > Asymmetric signature and
‘encryption policies

With asymmetric tokens, the initiator uses 2 private key to encrypt or sign 3 message while the
racipiant uses the initistor corasponding public key tokens to dacrypt or verly signatures.

Message Integrity Policies

Initistor signature token

X505 ~ Action ~

Recipient signature token

X505 ~ Action ~

Message Confidentiality Policies

Use the same token types that are used for intagrity protection
Initiator encryption token

= Action ~

Recipiant encryption token

- Action ~

OEBPS/images/clientBindingsCustomProperties.png
Slapenias tha 4531y omy 6 Imbound o only 4> outsound mesesges.

Inbound and Outbound Custom Proparies:

[eow] (o]

‘Genera cient polcy set bindings > CCConsumesBindings > WS-Security > Custom properties
Specty custom propartes that apply to both inbound and sutbound messages or spacy

e mame vaun

B [l C

inbend Custom propartes:

[Mew] (&8t) [0see |

saec e

| combm.vaspivasecuriy.consumertimestampRaquired

Oubound Custom Propartes:
[Chew | £t] [[Doie |

[selea/name

e

oy | LOK) _Reset] Gl |

OEBPS/images/ProviderBindingsTrustStore.png
‘Generalprovider plicy set bindings > New > WS-Security > Keys and certifcates >

st keystors configuratons tha contan roo-tusted cartfcates. These confgurations are used for
e e liuton ot t ncaming ey tkans i 503 ot

© Cantaty managed keystore
[Cororsarosis G Wi seo T ea e ote) [5]

xtarmal keystore

