Draft Draft

Bare JAX-WS

Paul Glezen, IBM

Abstract

This document is a member of the Bare Series of WAS topics distributed in both stand-alone and in collection form.
The latest renderings and source are available on GitHub at http://pglezen.qgithub.io/was-config.

Table of Contents

1. Bare JAX-WS WED SEIVICES ...oovuiieiiiiii ettt ettt e ettt e ettt r e e e et e e e e et e e e eban s 1
N L TS R @ 1 o £ PP 1
O T 411 T = o PP 2

O O Y P = I £ 5

1.2, JAX-WWS SEIVENS ..ottt ettt et e ettt e e et et e e e et et et e e e e e e 8
1.2.1. Using the Java Bindings WiIZardc..uieiiuiiiiiiiii et e e e e 8

o TU o= I] o1 12
2250 O o o3 @ U= Y. o | 12

2.2. ACCOUNT QUET YEJIB. | AVA oivvuiiiiiiiiiiieiie et e e e e e e e et e e e e e e e et e e e e e e et a e eans 14

I G 1= = 1 o= PSPPI 15

1. Bare JAX-WS Web Services
1.1. JAX-WS Clients

Java APl for XML - Web Services (JAX-WS) is a specification [3] that addresses Java web services development.
For web service clients, this amountsto generating Java client service stubs and XML bindings for usein invoking the
web service. Figure 1 illustrates how these components fit together. The green and yellow components are generated
from the WSDL. The green is the service stub. Its objects make the remote call to the service provider. The yellow
represents the XML -type-to-Java-type bindings (or simply XML bindings). The XML bindings are actually addressed
by a separate specification called Java API for XML Bindings (JAXB) that is referenced by JAX-WS. This is part
of what makes JAX-WS so much more powerful than its predecessor, Java APl for XML - Remote Procedure Call
(JAX-RPC).

Figure 1. JAX-WS Overview

Web
Service
Provider

: XML Bindings
Client generates ———» e =
Service Stub

| Jjax-ws runtime

DK

Another recent improvement is the inclusion of the JAX-WS runtime in the Java 6 SE (standard edition). One no
longer needs to reference specia "thin client” libraries to make web service clients run. The generated bindings run
directly against a Java 6 or later runtime. And not only are the runtime classes available in the JRE, the wsimport

Rendered: September 17, 2015 1 Git Commit: dfc672

http://pglezen.github.io/was-config

Draft Bare JAX-WS Draft

utility, responsible for generating the bindings from the WSDL, is part of the JDK on any platform. No special IDEs
or tools are needed.

The XML bindingsare Javaclassesthat map to the XML schematypesdefinedinthe WSDL. (One saysthat aJavatype
isbound to the XML schematype.) These types play the role of parameters for the service invocation. The invocation
functions themselves are methods on the service stub objects. The bindings objects are passed as parameters to the
service objects.

The generated service and binding objectstieinto the JAX-WS runtime. Thismay be part of the JDK asin the diagram
above. Or it may be implemented by a vendor such as Apache CXF or IBM WebSphere Application Server. In any
case, it isresponsible for

» marshaling the data structures into a serialized XML stream, and
 implementing the network protocol to transport the XML stream to the server.

Finally, the client code is the consumer of the service. It issues the reguest to the service stub and does whatever it
requires with the result.

Web service clients may be managed or unmanaged. Managed clients are typically associated with an application
server. The client is managed in the sense that aspects of its configuration are controllable through the administrative
capabilities of the application server. References to the service stub objects are usually retrieved from JNDI. Unman-
aged clients, also known as thin clients, do not rely on any underlying application server structure for configuration.
Their service client proxy objects are directly instantiated. Their configuration is usually done by setting properties
on the service stub instances. There is nothing wrong with running athin client inside an application server. It simply
won't benefit from enterprise manageability features.

1.1.1. Thin Clients

A thin client is one that does not expect the presense of any application server infrastructure. That's not to say a
thin client can't run within an application server container. It smply doesn't depend on the container for resources
or initialization.

Generating athin client is easy and requires nothing more than avalid WSDL and JDK 6. The command for generating
the JAX-WS bindings is wsimport. It should be in your command line path so long as your JDK is. To verify its
version and presence in your path, query its version.

$ wsinport -version
JAX-WS RI 2.1.6 in JDK 6
$

WEe'll usethe WSDL listed in Section 2.1. It'sa standalone WSDL file with a single operation that queries information
about acredit card account. Let's start with the following invocation of wsimport.

thinclient$ wsinport -d bin -s src -p org.acne. cc.jaxws ccQuery. wsdl
parsi ng WSDL. . .

generati ng code. ..

conpi | i ng code. ..

thinclient$

The options have the following meanings.

 -d directory into which the compiled classfiles are placed

- s directory into which the source code is generated

e - p package into which the source code is generated

Rendered: September 17, 2015 2 Git Commit: dfc672

Draft Bare JAX-WS Draft

If you run thiscommand without first creating thebi n and sr ¢ directories, the command will give an error. Otherwise
you get the following generated bindings classes.

thinclient/src/org/acne/cc/jaxws$ |Is -I

total 64

-rwr--r-- 1 pglezen staff 1073 Jun 16 13:42 CCPort Type. | ava
-rwr--r-- 1 pglezen staff 2341 Jun 16 13: 42 CCService.java
-rwr--r-- 1 pglezen staff 1363 Jun 16 13:42 (bjectFactory.java
-rwr--r-- 1 pglezen staff 1813 Jun 16 13:42 QueryFault.java
-rwr--r-- 1 pglezen staff 1053 Jun 16 13:42 QueryFaul t Msg.] ava
-rwr--r-- 1 pglezen staff 2061 Jun 16 13:42 QueryRequest.java
-rwr--r-- 1 pglezen staff 3727 Jun 16 13:42 QueryResponse.java

-rwr--r-- 1 pglezen staff 108 Jun 16 13: 42 package-info.java
thinclient/src/org/acne/cc/jaxws$

The problem with this generation of bindings concerns the CCSer vi ce class. It needsto find a copy of the WSDL
and without any additional argumentsto wsimport, it usesthe fully-qualified path name to the WSDL file from which
the bindings were generated.

URL baseUrl ;
baseUrl = org.acne.cc.jaxws. CCService. cl ass. get Resource(".");
url = new URL(baseUrl, "file:/Users/pglezen/thinclient/ccQuery.wsdl");

Clearly we don't want code referencing an absol ute path on adevel oper'sworkstation. We provideinformationtowsim-
port viathe - wsdl | ocat i on. From the code snippet above, one can see that the base of the URL begins with the
packagedirectory of the classitself. The WSDL will befoundif weadd it to thedirectory holding CCSer vi ce. j ava.

thinclient$ wsinport -d bin -s src -p org.acne.cc.jaxws -wsdl | ocati on ccQuery. wsdl
ccQuery. wsdl

Thisresultsin the following snippet in CCSer vi ce. j ava.

URL baselUrl ;
baseUr|l = org.acne. cc.jaxws. CCServi ce. cl ass. get Resource(".");
url = new URL(baseUrl, "ccQuery.wsdl");

But then we have to make sure to copy the WSDL file to the source directory where CCSer vi ce. j ava resides.
An alternative is to count the directory levels between CCSer vi ce. j ava (four in this case) and specify thisto the
wsimport. Then we can ssimply copy the WSDL to the bi n directory.

thinclient$ wsinmport -d bin -s src -p org.acne. cc.j axws
-wsdl l ocation ../../../../ccQuery.wsdl ccQuery.wsdl

Thisresult in the following snippet in CCSer vi ce. j ava.

try {
URL baselrl ;
baseUr|l = org.acne. cc.jaxws. CCServi ce. cl ass. get Resource(".");
url = new URL(baseUrl, "../../../../ccQuery.wsdl");

} catch (Ml formedURLException e) {
| ogger.warni ng("Failed to create URL for the wsdl
Location: '../../../../ccQuery.wsdl', retrying as a |local file");
| ogger . war ni ng(e. get Message()) ;

}

It makesfor afunny-looking warning messageif the WSDL isnot found. Thelesser evil isprobably amatter of choice.

The final step is a main method to drive everything. An example is shown in Example 1. If Mai n. j ava isin the
current directory, it may be compiled as shown below.

pgl ezen: ~/thinclient$ Is
Mai n. j ava bi n/ ccQuery.wsdl src/

Rendered: September 17, 2015 3 Git Commit: dfc672

Draft Bare JAX-WS Draft

pgl ezen: ~/thinclient$ javac -d bin -classpath bin Min.java
pgl ezen: ~/thinclient$

The - d option tells javac the root directory in which to place the class files. By putting it relative to bi n directory,
it will be placed with the bindings. Since the Mai n class references the bindings, and the bindings have already been
compiled into the bi n directory, it isal that's needed for the - cl asspat h option.

Example 1. Main.java

package org.acne.cc.client;

import java.util.Map;

i mport javax.xm .ws. Bi ndi ngProvi der;

i mport org.acne. cc. j axws. CCSer vi ce;

i mport org.acne. cc.j axws. CCPort Type;

i mport org.acne. cc.jaxws. Quer yRequest ;

i mport org.acne. cc.j axws. Quer yResponse;
i mport org.acne.cc.jaxws. QueryFaul t Msg;

public class Min {

public static void main(String[] args) {
String endpointUl = "http://|ocal host: 9080/ cc/ CCServi ce";
if (args.length == 1) {
endpointUrl = args[0];
}
Systemout. println("Using endpoint URL " + endpointUrl);
CCServi ce service = new CCService(); ©
CCPort Type port = service.getCCPort(); ©
Bi ndi ngProvi der bp = (Bindi ngProvider)port; ©
Map<String, Object> reqCtx = bp.get Request Cont ext () ;
reqCt x. put ("j avax. xm . ws. servi ce. endpoi nt. address", endpointUrl);

Quer yRequest request = new QueryRequest ();
request . set CcNo("2982- 3929- 5122-4829") ;
request . set Last Name(" Brown") ;

Quer yResponse response = nul | ;

try {
response = port.query(request); O
System out . println("Renote nethod returned.");
} catch (QueryFaul t Msg fault) {
System out. printl n("Caught service exception.");

Systemout.println("\tnmsg = " + fault);

}

if (response !'= null) {
System out . println("Got response.");
System out. println("Account Num = " + response. get Acct No());
Systemout.println(" First name = " + response. get FirstName());
System out. println(" Bal ance = " + response. get Bal ance());

}

}

©® TheCCSer vi ce class corresponds to the <wsdl : ser vi ce> definition that starts on line 79 of Section 2.1.
Thisclassextendsj avax. xml . ws. Ser vi ce asrequired by the JAX-WS specification.

Rendered: September 17, 2015 4 Git Commit: dfc672

Draft Bare JAX-WS Draft

® The CCPort Type interface corresponds to the <wsdl : por t Type> definition that starts on line 52 of Sec-
tion 2.1. The implementation is retrieved using the get CCPor t () method on the service class. Such a method
exists on the service class for each <wsdl : port > defined asin line 80 of Section 2.1. Often there will be only
one such definition. Examples of when there might be more are when there are multiple port-types or multiple
SOAP bindings (1.1 and 1.2) for asingle port-type.

Section 4.2.3 of the JAX-WS specification [3] warns us that these proxy types are not guaranteed to be thread
safe. Some vendor implementations opt to provide a thread-safe implementation. But the specificaton does not
require it; so appropriate care must be taken when executing in multithreaded environments.

® Thecast fromaCCPort Type to aBi ndi ngProvi der may seem dangerous since CCPor t Type does not
extend Bi ndi ngPr ovi der . But the JAX-WS specification requiresthat the implementation of CCPor t Type
returned by the get CCPort () method also implement the Bi ndi ngPr ovi der interface as shown in Fig-
ure 2.

O Thislineisthe actual remote invocation.

Thej avax. xm . ws. Bi ndi ngPr ovi der interface is key to the ability to dynamically set the remot endpoint.
This and other capabitlities are described in Section 4.2.1 on the JAX-WS 2.1 specification [3]. Figure 2 comes from
the JAX-WS 2.1 specification. It illustratesthe rel ationship betweenthe Bi ndi ngPr ovi der and therequest context.

Figure 2. JAX-WS Binding Provider

Binding

Map < String,Object =
- (Request Context)

Binding Provider

has-a_.—

getBinding():BPinding "'HH{m_ﬂ

™. Map < String,Object >
. .
implements extends {(Response Context)

Proxy Dispatch

1.1.2. Managed Clients

Managed clients are typically invoked by JEE components that rely on a server administrator for the configuration of
the web service client. A JEE infrastructure administrator determines properties such as target URLs and timeouts.
Theinstantiation of the client service object istypicaly injected into afield annotated with @\ebSer vi ceRef .

Example 2. JAX-WS Client Annotations

@Resour ce(name="MckCC"', description="Stub the remote CC call")
Bool ean nbckCC = fal se;

@\ébSer vi ceRef (name="j axwsCC') CCServi ce ccServi ce;
CCPort Type account = null;

In the code snippet above, two variables are declared with the help of annotations. The first one is a @Resour ce
annotation used to inject a Bool ean value into nock CC. This determines whether our application returns a mock
object implementation or actually attempts a remote invocation. This technique is very useful in web service client
implementations since one cannot always rely on the service provider being available.

Rendered: September 17, 2015 5 Git Commit: dfc672

Draft

Bare JAX-WS

Draft

A CCSer vi ce instance is injected at initialization time. The CCPor t Type instance is populated in intialization

code. For an EJB, thiswould likely be a method annotated with @ost Const r uct .

Example 3. EJB PostConstruct Method

@Post Const r uct

\Y

}

oid initDel egate() {
| 0og. ent eri ng(CLASSNAME, "initDel egate");
if (mockCO) {

| og. war ni ng("Mdck is set to true. Using nock imenentati on of del egate.");

account = new Account Quer yMock();

| og. fi ne("Account Quer yMock i nstance created.");

} else {
account = ccService. get CCService();

| og. fi ne("Account QueryDel egate instance created.");

}
| 0g. exi ti ng(CLASSNAME, "initDel egate");

The nock CC value is used to determine whether to create a mock implementation of the delegate or a remote proxy
implementation. (The full listing for this managed sample isin Section 2.2.) Make sure to log the fact that a mock
object is being used instead of a true remote object. Moreover, the mock implementation should also log the fact it
runsfor every method request. It should be logged at theinfo level so that itsinvolvement is clear for every request (in
Syst enCut . | 0g). Otherwise one could easily forget that mocking is enabled and precipitate all kinds of backend
firedrills.

The mock setting can be adjusted in the WAS admin console in the following way.

Procedure 1. Modify Mock Behavior

1.

Login to the WAS admin console and navigate to the application panel. A sample application panel is shown

in Figure 3.

Figure 3. CC Consumer Application Panel

General Froperties Hudube

N

Application reference validation 1ny gl il
Issus wamings -I

Detsill Proparties

Enterprise Java Bean Properties

S araus o Dafault masseging provider rafgrantes

Chent Module Properties

L0 ref . Clignt migdyls deploymgnt modys

Wab Sarvicas Propartios

Rendered: September 17, 2015 6

Git Commit: dfc672

Draft Bare JAX-WS Draft

2. Click thelink labeled Environment entries for EJB modules asindicated in Figure 3
3. You can provide the MockCC value in the table as shown in Figure 4. Notice that the values of the Name and

Description columns correspond to the name and description attributes of the @Resour ce annotation for the
nockCCfieldin 272.

Figure4. CC Consumer EJB Mock Environment Entry

Enterprize Applicatipns > COCon 1 > Environment entries for EJB modules
Environment entries for EJ8 modules
Configure valuss for anvircnmant entries in £J8 modules.
Modula URT Basn Name | Type Dascription Valus

Stub tha

COCConTHREIR Jr T AgrountQueryEJE | MockCC| Boolean | remote CC
eall

CCConsurmerElB.jar 1HF/ mjo-jar.xml

4. Click OK and save the changes.

The save operation will cause the application to restart so that the new value isimmediately effective. This does not
cause the VM to restart. The restart should only take a few seconds for a properly written application.

Another common JAX-WS administrative task is to change the target endpoint. The default endpoint is specified in
the WSDL from which the bindings were generated. Since the endpoint is rarely known and WSDL design time and
can change across environments, it isoften simply settol ocal host . Developers will often override this using their
own proprietary schema via a property file somewhere on the file system. Once the endpoint host name is known, it
can be set on the web service binding provider just as in the unmanaged case in 2?7?. A drawback to thistechniqueis

that the property file must be consistent across each machinein the cluster. Moreover, aWA'S admin must understand
each application-specific JAX-WS customization technique.

The target endpoint can be managed through the WAS admin console (this is a managed client after al!). If the
application doesn't override the endpoint host and port, the endpoint can be set following these steps.

Procedure 2. Modify JAX-WS Endpoint Destination
1. Inthe WAS admin console, navigate to the application panel.
2. Select the Manage Modules link.

3. Select the module containing the JAX-WS client.

4. Click the Web service client bindings link shown in Figure 5.

Figure 5. Modulewith Client Bindings

Enterprise Applications > CCC App = M ge Modules > CCC EJB.jar
Specifies a server-module installation binding for an EIB madule.
Configuration
General Broperties Web Services Properties
URI
* @l = \eb services client bindinas
CCConsumarEiB.jar View Web services client deplovment descriptor extension
Alternate deployment descriptor
Web Services Security properties
Web services: Client security bindings
Starting weight
5000 Additional Properties
View Module Class Loader
oK Resst Cancel
Aoply |4 | | Custom properties
Target specific application status
View Deployment Descriptor

Rendered: September 17, 2015 7 Git Commit: dfc672

Draft Bare JAX-WS Draft

5. From the list of bindings, choose the one corresponding to the @\¥bSer vi ceRef annotation in Example 2.
The name attribute of the annotation should match the Web Service column in the table of Figure 6. From this
row, click the Edit link in the Port Information column.

Figure6. Client Binding List

Praferrad
=) ElB WSDL Filename Port portt
Service . Information
Mappings
CCService | AccountQueryEIB | Use default (null) |z| Edit... Edit...
jaxwsCC | AccountQueryEIB | Use default {null) |Z| Edit...

6. Enter the full endpoint addressin the column labeled Overridden Endpoint URL as shown in Figure 7.

Figure7. JAX-WS Endpoint Override

Request
Part Timeout Overridden Endpoint URL Overridden Binding Namespace
(seconds)

{urn:issv:bare:wssecico:query}CCService I http://localhost:9086/provider/CCService I

7. Click the OK and save.

The Save action will restart the application. The new new destination will become immediately effective. Remember
this only works if the client code does not override the BindingProvider settings as done in Example 1.

1.2. JAX-WS Servers

JAX-WS XML bindings for the server are no different than they are for the client. When using wsimport from the
command line, there is no difference in the appearance of the output. The difference is what you do with the outpuit.
You can start by deleting the port type and service classes (the classes by annotations @ and @ of Example 1). These
would only be used by a client and we're implementing the provider. But this begs the question: what do we use for
the implementation class?

The answer, when using wsimport from the command line, isthat there is nothing to help you with theimplementation
class. You just create one from scratch that matches the operations in the WSDL and use Java annotations to piece
everything together. The implementation class doesn't even have to implement the service interface! This may seem
abit scary at first. But it's not hard once you know which annotations to use; and we'll get to that in a bit.

The good news for RAD (Rational Application Developer) users is that the Generate Java Bean Skeleton wizard
actually does generate the skeleton with the annotations. It is this wizard that we'll discuss in detail for the provider
implementation.

1.2.1. Using the Java Bindings Wizard

The Generate Java Bean Skeleton wizard is how we create and update the Java bindings and service implementation
skeleton. Many of these instructions apply just as well to Eclipse JEE edition as they do to RAD.

1.2.1.1. JAX-WS Runtime

The JAX-WS bindings wizard requires that you specifiy which JAX-WS runtime library implementation to target. In
our case, we'll target the WAS version of this runtime. But for the WAS runtime to be an available option, we need
to register the location of the WAS runtime libraries on our developer workstation. The WAS runtime libraries are
available from alocal WAS installation on which you intend to run your local tests.

Rendered: September 17, 2015 8 Git Commit: dfc672

Draft Bare JAX-WS

Draft

Follow these steps to register your WAS installation with RAD installation.

Procedure 3. Register WAS runtimewith RAD

1.

Figure 8. Initial Server Runtimes

(5) Preferences [B [t
type filter text Server Runtime Environments =R -
T DperaFlunaI Editor Add, remove, or edit server runtime environments.
Report Design)
Run/Debug Server runtime environments:
4 Server) Mama: Type Add...
Audio =
Launching [Web Preview Server Runtime Web Preview Server Runti...
Profilers
Runtime Environments
WebSphere Application Sen.
SIP Search...
Team p r
Validation 3 Columns...
Web
Web Services
XML -
4 n »

Open the preferences window to Window — Prferences and navigate to Server — Runtime Environment. This
should reveal the currently available server runtime environment as shown in Figure 8.

If thisisthe first runtime you've cataloged, you will only see the Web Preview Server Runtime.

2. Click the Addin Figure 8.

3. Select WebSphere Application Server v8.5 from the list of available server adapters as shown in Figure 9.

Figure9. Choose the WAS 8.5 Adapter

P
@ Mew Server Runtime Environment

(=] [|

New Server Runtime Environment

Define a new server runtime envirenment

Download additional server adapters

=

Select the type of runtime environment:
type filter text

4 [= IBM

E Web Preview Server Runtime

WebSphere Application Server vi.0

WebSphere Application Server v8.5

&) WebSphere Application Server V8.5 Liberty Profile
: [~ JBoss

13

lean |

WebSphere Application Server vB.5

[] Create a new local server

@ < Back Next > Finish
Rendered: September 17, 2015 9 Git Commit: dfc672

Draft Bare JAX-WS Draft

If this selection is not available in Figure 9, it is because you did not install the WAS 8.5 test server component
during your RAD install. Y ou must

a. download the WAS 8.5 test environment repository
b. makeit availableto your IBM Installation Manager
c. runthe Installation Manager Modify command

d. addthe WAS 8.5 test environment in the wizard.

4. Provide aNamefor the runtime environment. Y ou can shorten the default "WebSphere Application Server v8.5"
tojust "WASv8.5". But be sure to note Impact of Runtime Label on Team Development.

I mpact of Runtime Label on Team Development
The value of the Name field in Figure 10 will be embedded in your project metadata where ever you
declare adependency on it. Other devel opers with whom you share projects may declarethisdifferently.

When you share projects via source control, these dependencies won't resolve due to the name conflict.
It's helpful to make sure everyone on the team agrees to the same environment name.

Figure 10. Provide WAS 8.5 location

i it
Mew Server Runtime Environment I. = i‘z-]

WebSphere Application Server Runtime Environment =

Specify the WebSphere Application Server installation directory.

Mame:
WASWES

Installation directony:

C:A\ibm\washlS

(For example, fopt/WebSphere/AppServer)

IRE for the runtime environment:

WebSphere Application Server JRE 1.6, 64 bit - I

JRE location:
ChibmYowas85Yjavaljre

N
'\‘?_,.' Mext = Finish I I Cancel

For the Installation directory field, enter the location of the WAS 8.5 installation on your workstation. The JRE
information will be completed automatically when you enter avalid WAS 8.5 installation directory.

5. Click Finish. Theresult should bethat the WAS 8.5 installation appearsin the Server Runtime Environment panel
asshown in Figure 11.

Rendered: September 17, 2015 10 Git Commit: dfc672

Draft Bare JAX-WS

Draft

Figure 11. Server runtimeswith WAS 8.5

(&) Preferences L‘E&J
type filter text Server Runtime Environments [CRAE A
> Run/Deb
un/tieaug i Add, remove, or edit server runtime environments. -
4 Server
Audio Server runtime environments:
Launching Name Type Add... =
Profilers =
Runtime Environments | |2 Eiwas a5 ‘WebSphere Application Server v8.5 Edit
, WebSphere Application 3 E ‘Web Preview Server Runtime ‘Web Preview Server Runtime -
sIp Remove
. Team T
1 » - =
)
|\?J| oK] [Cancel

If you select the WebSphere Application Server entry in the preference navigation panel (just under Runtime
Environments), you'll seethe WAS 8.5 entry is present in the top list of Figure 12. Select the WAS 8.5 entry and

the bottom list will display alist of profiles.

Figure 12. WAS 8.5 Profiles

» Plug-in Development
» QUT Operational Editor
» Report Design

» Run/Debug
4 Server
Audio
Launching

m

WebSphere Application Server profiles with write permission defined in the runtime server selected above:

(5) Preferences 5
type filter text WebSphere Application Server prrw
» Help o
, Imparter
. Install/Updiate [Allow applications contsining errors to be published on a server
» Java Check for valid profiles and servers during werkbench startup
> JavaEE
> Java Persistence WebSphere Application Server local profile management:
. JavaScript
Jython Installed Runtime Name Installation Directory Columns...
+ Modeling Eilwas s Citibmiwass
0SGi

Profilers Name Location
Runtime Environments

oauthFun Caprofilsicauthfun
- cws Coprefilesicws
cwsl Ca\prefiles\cwsl
» Tesm
Validation baNL Caprofiles\bahL
> Web
 Web Services
» XML

.

Run Profile Management Taol

From this panel you may choose to create a new WAS 8.5 profile for your development activities.

Tip

It's good to use separate profiles for applications that will run in separate JVMs in order to model the
isolation you expect in the production environment. On the other hand, applications which are expected

to run together should share the same profile.

6. Click OK to save your changes.

1.2.1.2. JAX-WS Emitter Preferences

The prospect of running the emitter wizard mulitple times raises a concern regarding consistency. How do you re-
member to run the wizard with the same options every time? It would be nice if the emitter wizard allowed you to
save your optionsin afile for future invocations (like when exporting a JAR archive in Eclipse). But there is no such

Rendered: September 17, 2015 11

Git Commit: dfc672

Draft Bare JAX-WS Draft

feature. The closest we can come is to configure defaults for the emitter wizard that are as close as possible to what
you want so you can lessen the likelihood of making an error.

In the RAD preferences window there are several navigation choices under Web Services. Not all of them apply to
JAX-WS generation. The Web Services - Resource Management. panel allows you to specify that

1.2.1.3. JAX-WS Emitter Wizard

To start the emitter wizard, right-click on the WSDL source file and select Web Services » Generate Java Bean
Skeleton. Thefirst panel is shown in ?2?. The WSDL file name should already be populated if you started the emitter
wizard by right-clicking the WSDL file.

The skeleton generanted by the RAD wizard is shown in the listing below.
package org. acne. cc. j axws;

@ avax. j ws. WebSer vi ce (endpointlnterface="org.acne. cc.jaxws. CCPort Type",
t ar get Namespace="ur n: i ssw. bar e: wssec: cc: query",
servi ceNane=" CCSer vi ce",
por t Nane=" CCSer vi ce",
wsdl Locat i on="\WEB- | NF/ wsdl / ccQuery. wsdl ")

public class CCSoapBi ndi ngl npl {

publ i ¢ QueryResponse query(QueryRequest paraneters) throws QueryFault Msg {
/1 TODO Aut o- gener at ed net hod st ub
return null;

}

2. Source Listings
2.1. ccQuery. wsdl

1 <?xm version="1.0" encodi ng="UTF- 8" ?>
<wsdl : definitions target Namespace="urn: i ssw bare: wssec: cc: query"

xm ns:tns="urn:issw bare: wssec: cc: query"
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"

5 xm ns: wsdl soap="http://schemas. xm soap. or g/ wsdl / soap/"
xm ns: xsd="htt p: // www. W3. or g/ 2001/ XM_Schena" >

<wsdl : types>
<schenm t ar get Nanespace="urn: i ssw. bare: wssec: cc: query"
xm ns="http://ww. W3. or g/ 2001/ XM_Schenma" >

10 <el emrent nanme="Quer yRequest ">
<conpl exType>
<sequence>
<el enent nanme="ccNo" type="xsd: string"/>
<el enent nanme="| ast Nane" type="xsd:string"/>
15 </ sequence>

</ conpl exType>

</ el enent >

<el emrent nanme="Quer yResponse" >
<conpl exType>

20 <sequence>
<el enent nanme="ccNo" type="string"/>
<el enent nane="acct No" type="string"/>

<el enent nane="| ast Name" type="string"/>
<el enent nane="first Name" type="string"/>

Rendered: September 17, 2015 12 Git Commit: dfc672

Draft

Bare JAX-WS Draft

25

30

35

40

45

50

55

60

<el erent nanme="bal ance" type="int"/>
</ sequence>
</ conpl exType>
</ el enent >
<el emrent nanme="QueryFaul t">
<conpl exType>
<sequence>
<el enent nanme="ccNo" type="string"/>
<el erent nanme="t xnl d" type="int"/>
</ sequence>
</ conpl exType>
</ el enent >
</ schema>
</ wsdl : types>

<wsdl : nessage nane="Quer yRequest Msg" >
<wsdl : part el ement ="t ns: Quer yRequest" nane="paraneters"/>
</ wsdl : message>

<wsdl : nessage nane="Quer yResponseMsg" >
<wsdl : part el ement ="t ns: Quer yResponse" nane="paraneters"/>
</ wsdl : message>

<wsdl : nessage nane="QueryFaul t Msg" >
<wsdl : part el ement="tns: QueryFaul t" nane="paraneters"/>
</ wsdl : message>

<wsdl : port Type name="CCPort Type" >
<wsdl : operati on nanme="query">
<wsdl : i nput nessage="t ns: Quer yRequest Msg" nanme="quer yRequest"/>
<wsdl : out put nessage="t ns: Quer yResponseMsg" nanme="quer yResponse"/>
<wsdl : fault nessage="tns: QueryFaul t Msg" nane="queryFaul t"/>
</ wsdl : operation>
</ wsdl : port Type>

<wsdl : bi ndi ng nane="CCSoapBi ndi ng" type="tns: CCPort Type" >
<wsdl soap: bi ndi ng styl e="docunent" transport="http://schemas. xm soap. or g/ soap/

http"/>

65

70

75

80

<wsdl : operati on nanme="query">
<wsdl soap: operati on soapActi on="ccQuery" styl e="docunent"/>

<wsdl : i nput name="quer yRequest ">
<wsdl soap: body use="literal"/>
</wsdl : i nput >

<wsdl : out put nanme="quer yResponse" >
<wsdl soap: body use="literal"/>
</ wsdl : out put >

<wsdl : faul t name="queryFaul t">
<wsdl soap: fault nanme="queryFault" use="literal"/>
</wsdl : faul t>
</wsdl : operati on>
</ wsdl : bi ndi ng>

<wsdl : servi ce nanme="CCServi ce">
<wsdl : port bi ndi ng="t ns: CCSoapBi ndi ng" nane="CCPort" >
<wsdl soap: address | ocati on="http://I| ocal host/services/statement"/>
</wsdl : port >
</wsdl : servi ce>

Rendered: September 17, 2015 13 Git Commit: dfc672

Draft Bare JAX-WS

Draft

</ wsdl : defi nitions>
85

2.2. Account Quer yEJB. | ava

1 package org.acne. cc. ej b;
i mport java.util .l oggi ng. Logger;

5 inmport javax.annotation. Post Construct;

i mport javax. annot ati on. Resour ce;
i mport javax.ejb. Local Bean;
i mport javax.ejb. Statel ess;
i mport javax.xm .ws.WbServi ceRef;

10
i mport org.acne. cc. del egat e. Account Query;
i mport org.acne. cc. del egat e. Account Quer yDel egat e;
i mport org.acne. cc.j axws. CCPort Type;
i mport org.acne. cc. j axws. CCSer vi ce;

15 inport org.acne. cc.jaxws. QueryFaul t Msg;
i mport org.acne. cc.jaxws. Quer yRequest ;
i mport org.acne. cc.j axws. Quer yResponse;

@t at el ess
20 @ocal Bean
public class Account QueryEJB {

public static final String CLASSNAME = Account Quer yEJB. cl ass. get Nane() ;
private static final Logger |og = Logger. getLogger (CLASSNAME) ;
25
@Resour ce(name="MckCC', description="Stub the renpte CC call")
Bool ean nockCC = f al se;

@ebSer vi ceRef (nane="j axwsCC"') CCServi ce ccServi ce;
30 CCPor t Type account = null;

publ i ¢ Account QueryEJB() {
| og. ent eri ng(CLASSNAME, “"ctor");
| 0g. exi ti ng(CLASSNAME, "ctor");
35 }

@ost Const r uct
voi d initDel egate() {
| og. ent eri ng(CLASSNAME, "initDel egate");
40 if (nmockCC {
| og. warni ng("Mdck is set to true. Using nock in enentation of

del egate.");
account = new Account Quer yMock();
| og. fine("Account QueryMock instance created.");
} else {
45 account = ccService. get CCService();
| og. fine("Account QueryDel egate instance created.");
}

| 0g. exi ti ng(CLASSNAME, "initDel egate");
}
50
publ i ¢ QueryResponse query(QueryRequest request) throws QueryFault Msg {
| og. ent eri ng(CLASSNAME, "query");
Quer yResponse response = account. query(request);

Rendered: September 17, 2015 14 Git Commit: dfc672

Draft Bare JAX-WS Draft

| 0og. exi ti ng(CLASSNAME, "query");
55 return response;

3. References

[1] WAS 8.0 Info Center, IBM. Online: http://pic.dhe.ibm.com/infocenter/wasinfo/v8ro/

[2] WS-SecurityPolicy 1.2 Specification, December, 2006. OASIS. Online: http://docs.oasi s-open.org/ws-sx/ws-se-
curitypolicy/200512

[3] JAX-WS 1.2 Specification, May, 2007. Sun Microsystems, Inc. Online: http:/jcp.org/aboutJava/communi-
typrocess/mrel/jsr224/index2.html

[4] Developing Web Service Applications, IBM. Red Paper Online: http://www.redbooks.ibm.com/redpapers/pdfs/
redp4884.pdf

Rendered: September 17, 2015 15 Git Commit: dfc672

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html
http://www.redbooks.ibm.com/redpapers/pdfs/redp4884.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4884.pdf

	Bare JAX-WS
	Table of Contents
	1. Bare JAX-WS Web Services
	1.1. JAX-WS Clients
	1.1.1. Thin Clients
	1.1.2. Managed Clients

	1.2. JAX-WS Servers
	1.2.1. Using the Java Bindings Wizard
	1.2.1.1. JAX-WS Runtime
	1.2.1.2. JAX-WS Emitter Preferences
	1.2.1.3. JAX-WS Emitter Wizard

	2. Source Listings
	2.1. ccQuery.wsdl
	2.2. AccountQueryEJB.java

	3. References

