DocBook with Eclipse

Paul Glezen
IT Specialist
IBM
 Software Services for WebSphere

Abstract

 This document explains how to quickly start working with
 DocBook using your Eclipse Web Tools Platform (WTP)
 environment. WTP is required only for the XSLT features
 it provides. This article covers Mac, Linux, and Windows.

1. Introduction

For this version of the article, I'm going to assume you have some reason to
learn DocBook rather than try to provide a motivation. But just in case you
stumbled on this document expecting an office suite replacement for products
such as MS-Office, OpenOffice or LibreOffice, stop now. DocBook is not a
WYSIWYG product. It has a considerable learning curve and should only be
used by propeller-heads.

But perhaps you're already interested in DocBook but are wondering why use
Eclipse to produce DocBook documents. I found Eclipse helpful for DocBook
usage for the following reasons.

	
 Eclipse has built-in support for stylesheet transformations. You have to
 make sure you download the right edition (the J2EE edition is a safe bet).

	
 Eclipse has support for developing and running Ant scripts. You can get
 by without script support for your first few toy documents. But as you
 learn about the various parameters supported by the output configuration,
 provding the parameters via a command line becomes unwieldy.

	
 Eclipse has spell checking support within its XML editors.

2. Getting Files

DocBook is basically a set of stylesheets that convert our content-centric
XML source files into a desired format. So acquiring DocBook amounts to
acquiring these stylesheets.

2.1. DocBook Stylesheets

The DocBook stylesheets themselves are located at the following link.

http://sourceforge.net/projects/docbook/files/docbook-xsl-ns/

Download the latest version in an archive format suitable for your OS.

2.2. Formatting Objects (FO)

If you want to generate PDF files, then there are a few more downloads. DocBook
doesn't generate PDF files directly. Rather, it generates an XML document
structured as Formatting Objects, or FO. A separate
processor developed by an Apache project called
Formatting Object Processor (FOP) takes the FO output
from DocBook and produces a PDF file.

Figure 1. Generating PDF from DocBook
[image: Generating PDF from DocBook source]

FOP may be downloaded from the Apache FOP project.

http://xmlgraphics.apache.org/fop/download.html

Choose the binary download. You'll be asked to choose a mirror. On the
mirror site, choose the binaries folder and download the latest stable
distribution in the archive format supported by your OS.

2.3. OFFO Hyphenation

FOP uses a hyphenation toolkit that is part of the OFFO project. The binary
is downloaded from SourceForge.

http://sourceforge.net/projects/offo/

Download the file offo-hyphenation-binary_v2.0.zip.

3. Installing DocBook Files

Installing DocBook files pretty much amounts to unarchiving them. But
it pays to plan things up front to ease the upgrade process when new
versions of the stylesheets are released. The schemes described in
this article differ slightly by OS.

Where you place files is somewhat arbitrary. This section is simply
where I place them. Feel free to override these guidelines with any
preference you may have.

3.1. Mac OS X

I configure the DocBook related stylesheets in
/usr/local/share. One must
have admin rights to set up here. If you don't have admin
privileges, you may follow these steps substituting a location
under your user directory.

	
 Expand the DocBook stylesheets into
 /usr/local/share.
 The name of the directory created by expanding the archive should
 contain the version number of the stylesheets.

	
 Create a soft link named
 docbook
 that points to the directory just
 created by expanding the archive.

ln -s docbook-xml-ns-1.77.1 docbook

 Afterward, your directory should look similar to this.

 /usr/local/share$ ls -l
 total 8
 lrwxr-xr-x 1 root wheel 21 Jun 6 21:18 docbook@ -> docbook-xsl-ns-1.77.1
 drwxr-xr-x@ 46 root wheel 1564 Jun 6 21:17 docbook-xsl-ns-1.76.1/
 drwxr-xr-x@ 51 root wheel 1734 Jun 4 15:09 docbook-xsl-ns-1.77.1/
 drwxr-xr-x 7 root wheel 238 Jun 7 18:22 java/
 /usr/local/share$

	
 Expand the FOP and OFFO archives into the
 /usr/local/share/java
 directory. For the FOP directory, create a soft link as was
 done in the previous step. This is not necessary for the
 OFFO distribution since we are simply poaching its library,
 not referencing it. The
 /usr/local/share/java
 directory should look similar to this.

/usr/local/share/java$ ls -l
total 16
lrwxr-xr-x 1 root wheel 7 Jun 7 18:22 fop@ -> fop-1.0
drwxr-xr-x@ 17 root wheel 578 May 10 22:04 fop-1.0/
drwxrwxr-x 10 root wheel 340 Oct 29 2010 offo-hyphenation-binary/
lrwxr-xr-x 1 root wheel 13 Jun 6 20:10 xalan@ -> xalan-j_2_7_1
drwxr-xr-x@ 12 root wheel 408 Jun 6 19:29 xalan-j_2_7_1/
/usr/local/share/java$

	
 Copy fop-hyph.jar from the OFFO installation
 to the fop/lib directory.
 (Or you can simply hard link to it.)

This completes the file system set-up for Mac OS X.

4. New Eclipse Workspace

To configure a new Eclipse workspace for DocBook projects, install
the XML/XSL templates from the Starter Kit to quicken the creation
of new source files. These are located in the
templates
folder of the Starter Kit.

	
 Import the DocBook
 Starter Kit
 as a plain Eclipse project or
 simply have the files somewhere handy.

	
 Open
 Windows → Preferences
 of your Eclipse workspace.
 As shown in Figure 2, there are
 two templates to import.

	
 First choose
 XML → XML Files → Editor → Templates
 and import
 templates/xml/docbook-new.xml
 from the Starter Kit. This will create two new creation templates
 for XML files named DocBook Master and
 DocBook Section as shown in
 Figure 2.

	
 Then choose
 XML → XSL → Templates
 and import
 templates/xsl/customization-pdf.xml
 from the Starter Kit. This will create a single creation template
 for XSL files named DocBook Customization.

Figure 2. Importing XML/XSL Editor Templates
[image: Importing Eclipse Editor Templates]

	
 To use Xalan for XSL processing run configurations, navigate to
 XML → XSL → Java Processors
 as shown in
 Figure 3
 and choose Xalan from the list.

 This is only meaningful if you intend to execute the DocBook stylesheets
 directly from an Eclipse run configuration. If you invoke the stylesheets
 from an Ant script as described in the next section, the Xalan processor
 is specified in the Ant script.

Figure 3. Choose Xalan for XSL Processing
[image: Choose Xalan for XSL Processing]

5. Configuring a New DocBook Project

We need to configure our DocBook project dependencies independent
of where we install them on our file system.
Since we usually expect to source-control our
DocBook source and build-scripts, we need to organize our Eclipse
workspace so that file system and OS dependencies don't creep into
source-controlled artifacts. This is accomplished on most platforms
with soft links and build links.

	
 Create a new project to hold the DocBook source.
 The type can be a simple project.

	
 Create a directory named
 softlinks.

	
 Make the DocBook and FOP installations
 appear to reside in our project under
 softlinks directory.
 Whether copies of those directories need to reside there depends
 on the OS platform.
 Linux and OS X support directory soft links. Windows does not.
 The Eclipse platform itself supports links for files, but not
 directories.

 Linux and OS X users can use the following technique.

	
 Open a terminal to the
 softlinks
 directory.

	
 Run the following command.

ln -s {path to DocBook installation} docbook

	
 Run a similar command for the FOP folder.

ln -s {path to FOP installation} fop

 Windows users must actually copy these folders into their Eclipse
 workspace under the softlinks
 directory. This is not a very attractive solution. I wasn't able
 to make the any of the following work in its place.

	Windows Shortcuts - On a Windows desktop
 or file explorer, a Windows shortcut looks like the real thing. But it's
 actually a file with an .inf extension. In the Eclipse workspace, we
 get docbook.inf and
 fop.inf.

	Eclipse Links - Eclipse provides a linking
 mechanism to refer to files and directories outside the workspace.
 Unfortunately, this linking information is stored in the
 .project metadata file that Eclipse uses
 for a project, not in workspace metadata. Thus it would also
 become source controlled and then imposed on others.

	
 Copy the build
 folder of the Starter Kit into your new project. This
 includes a build-core.xml that defines source
 dependencies and sets a few global properties. The other files
 reference build-core.xml and generate specific
 output formats.

	
 Create the following folders in your new project.

	images - used for storing image files.

	out - stores generated output for each
 of the output types.

	src - the source for your document content.

	
 In most cases, you will want to create a subdirectory of
 out for each output type.
 These directories contain files that control the presentation of your documents.
 (The src directory determines the content).
 If you generate PDF output, a
 pdf folder would
 contain the customization layer. If you generate HTML or EPUB output, the
 html or
 epub folder would contain the your
 CSS files.

 You're ready to start writing your DocBook source!

6. External Tools Configuration

Eclipse uses an
external tools configuration to execute
external tools. One of the most common external tool is the
Ant build script. Several Ant scripts are included in the
Starter Kit. The most convenient way to execute these scripts
is to execute them from a external tool configuration that
stores its parameters and dependencies in a single place and
is invoked at the click of a button.

The external tools configuration dialog is invoked from
 Run → External Tools → External Tools Configurations.
Right-click on Ant Build and select
New. This panel has several
tabs to be configured. These are described in the sections
below.

6.1. Main Tab

In the main tab enter the name of the build. A good convention to
follow is a short name for the document followed by the format of
the build. In the example
shown in Figure 2
the configuration for the HTML build of this document is named
"DocBook HTML."

Figure 4. External Tools Configuration - Main Tab
[image: Importing Eclipse Editor Templates]

The Buildfile field holds the location of the Ant script.
The simplest way to complete this field is to click the
Browse Workspace... button and navigate to
<project>/builds/build-html.xml.
In a similar way complete the Base Directory
field. Set it to the root of the workspace.

6.2. Refresh Tab

Eclipse often caches elements of its workspaces to improve performance.
Changes that an external tool makes to the file system are not immediately
noticed by the Eclipse workspace. This can always be remedied manually
by selecting an altered resource (or folder containing it) and pushing
the F5 on your keyboard. This tab provides for
accomplishing this automatically. Several operations are available.
The trick is to only refresh as much as you need since the more you ask
to be refreshed, the longer it takes. In our case, we want to refresh
the out directory since that is
where our build scripts place their artifacts.

Check the box marked
Refresh resources upon completion.
We won't necessarily have a resource selected when the build script is
run, so it's safest to choose Specify resources
and click its button. Choose the
out directory.

Figure 5. External Tools Configuration - Refresh Tab
[image: Importing Eclipse Editor Templates]

6.3. Build Tab

Uncheck the Build before launch box. In this case,
the Ant script is doing all the necessary building. No workspace builds
are necessary.

6.4. Targets Tab

An Ant script often has several targets that represent
the production of some artifact. This panel allows one to choose a particular
one. In the example shown in Figure 6,
the zip.html box is selected. As it happens,
This task declares a dependency on html and
init. So those get built, too.

Figure 6. External Tools Configuration - Targets Tab
[image: Importing Eclipse Editor Templates]

The init button shows an error marker because it
it is defined in a separate Ant script called
build-core.xml that is referenced by all the other
scripts. The Eclipse Ant editor is not yet smart enough to follow
relationships across files. Fortunately Ant itself is.

6.5. Classpath Tab

This is the trickiest one. We need to include all the JARs that DocBook
will need to parse and transform DocBook source. The Xerces and Xalan
libraries can be downloaded from Apache's
Xalan
and
Xerces
sites.
But since they are also included with the Eclipse distributions,
it's easy just to reference them from the Eclipse plugin directory.
Select the
User Entries root element in the list and on the
right click the Add External JARs....
Navigate to the plugins
subdirectory of your Eclipse install root and select the
four files in Figure 7 that
begin with org.apache.x.

Figure 7. External Tools Configuration - Targets Tab
[image: Importing Eclipse Editor Templates]

The DocBook Xalan extensions, xalan27.jar, are in the
extensions subdirectory of the
DocBook installation.

6.6. Copy Configurations

Creating the external tool configuration isn't that hard if you know what
you're doing. But it's easy to forget if you haven't done it in a while.
After you've followed these instructions once, it's easier to copy an
existing configuration than to create a new one from scratch. You'll
change the build file and choose different build targets. But the
classpaths will stay the same.

This will be demonstrated by creating an exernal tools configuration for
a PDF build. Open the External Tool Configurations as before. Right
click the DocBook HTML entry and select
Duplicate. This creates a new entry
called DocBook HTML (1). It has most of the
settings you already need. Make the following changes.

	Change the name to DocBook PDF.
	Change the build fil to build-pdf.xml.
	Choose pdf in the Targets tab.
	Click the Run button to test.

A similar process can be used for creating an EPUB build. Also, the same technique
can be used for builds of other DocBook projects, not just different renderings
of the same DocBook project. Just add these extra steps.

	On the Main tab, select the new project for
 the Base Directory field.

	On the Refresh tab select the new
 out folder for the new project.

7. References

[1]
 DocBook: The Definitive Guide,
 April, 2012.
 Norman Walsh.
 Online:
 http://docbook.org/tdg51/en/html/

[2]
 DocBook XSL: The Complete Guide,
 Fourth Edition,
 September, 2007.
 Bob Stayton.
 Online:
 http://www.sagehill.net/docbookxsl/index.html

OEBPS/images/runcfg-tab-main.png
Name:

" Refresh| o Build| v Targets| % Classpath| <@ Properties | =4 JRE | F§ Environment| (1 Common

Buildfile:

Siworkspace_loc:/DocBook/buildbuild-html.xmi}

[Browse Workspace... | [Browse file System... | | Varables..

Base Directory:

Siworkspace_loc: /DocBookl

Srowse Workspace... | | Browse file System... | [Variabis..

Arguments:

OEBPS/images/chooseXalan.png
Java Processors

Add, remove or it XSLTprocessor dfiitions.
By defaul, the checked Processor s used for ai vansformations.

sl v XU pocessrs
Pt Schems s Name Tope Debuager
ey i s et Y L)
s s
o precessrs
Sy Coorng —
Tempistes
Valgston
@

OEBPS/images/docbook2pdf.jpg

OEBPS/images/runcfg-tab-refresh.png
Name:

(5] Main [Refresh (s Build| & Targets | % Classpath| > Properties | =i JRE | F§ Environment | £ Common

4 Refresh resources upon completion.

O The entire workspace
O The selected resource
) The project containing the selected resource

) The folder containing the selected resaurce

(®) Specific resources

4 Recursively include sub-folders

OEBPS/images/EclipseDocBookEditorTemplates.png
806

Preferences

type filter text

b Web Services

Templates

Create, edit or remove templates:

oy
XML Catalog @ comment XML Tag xml comment on e
VEditor ¥ DocBook Master New XML g DocBook: on
Content Assist (¥ DocBook Section New XML 2 new section of a Do on -
|» o schematoc XML Attribute XML Schema location atrbute.on
@ xml declaration New XML xml declaration on =
Validation o xsinsp XML Attribute XML Schema name space on
» XML Schema Files. @ XSL processing in... XML Tag XSL processing instruction on
e ®
Java Processors. [impore..)
Vilidaton Export.
@ (o) o]

OEBPS/images/runcfg-tab-target.png
Name: [DocBool HTML
] Main 16" Refresh
Check targes to execute:

Build [Targets % Classpath| > Properties| =4 JRE|

Name “Descrpton]
O @ HTMLInic
O @nmi Create HTML Format.

& @zipheml Create archive.
clean.htmi Clean up KTML directory.

OEBPS/images/runcfg-tab-classpath.png
Name: [DocBook HTML

[man [Retresh i ui [Targets [, Classpath \, <> Properties| = JRE | 7§ Environment | = Common

Classpath:

U
» @) Ant Home (Default)
» =i\ Additional Tasks & Support ~—=
(5 org.apache.xerces_2.9.0.v201101211617.jar - /Applications/ecipse-4.3/plugins/
& org.apache.xalan_2.7.Lv201005080400 ar - /Applications eclipse-4.3 plugins/ Remove

{m org.apache.xml.resolver_1.2.0.v201005080400jar - /Applications/eclipse-4.3 /plugins/
5 org.apache xmlserilizer_2.7.1¥201005080400.jr - /Applications/eclipse-4.3/plugins/
5 xalan27.jar - fusr/local/share/ docbook-xsl-ns-1.77.1/extensions

